Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
NAD+ [cytosol]
Stable Identifier
R-ALL-29360
Type
Chemical Compound [SimpleEntity]
Compartment
cytosol
Synonyms
NAD, NAD(+), Nicotinamide adenine dinucleotide, DPN, Diphosphopyridine nucleotide
Locations in the PathwayBrowser
for Species:
Homo sapiens
Bos taurus
Caenorhabditis elegans
Canis familiaris
Danio rerio
Dictyostelium discoideum
Drosophila melanogaster
Gallus gallus
Mus musculus
Mycobacterium tuberculosis
Plasmodium falciparum
Rattus norvegicus
Saccharomyces cerevisiae
Schizosaccharomyces pombe
Sus scrofa
Xenopus tropicalis
Expand all
Cell Cycle (Bos taurus)
Cell Cycle, Mitotic (Bos taurus)
M Phase (Bos taurus)
Mitotic Metaphase and Anaphase (Bos taurus)
Mitotic Anaphase (Bos taurus)
Nuclear Envelope (NE) Reassembly (Bos taurus)
Initiation of Nuclear Envelope (NE) Reformation (Bos taurus)
ANKLE2 is deacetylated by SIRT2 (Bos taurus)
NAD+ [cytosol]
Drug ADME (Bos taurus)
Abacavir ADME (Bos taurus)
Abacavir metabolism (Bos taurus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Bos taurus)
NAD+ [cytosol]
Azathioprine ADME (Bos taurus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Bos taurus)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Bos taurus)
NAD+ [cytosol]
Metabolism (Bos taurus)
Aerobic respiration and respiratory electron transport (Bos taurus)
Pyruvate metabolism (Bos taurus)
LDH tetramer oxidises LACT to PYR (Bos taurus)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Bos taurus)
NAD+ [cytosol]
Respiratory electron transport (Bos taurus)
Malate-aspartate shuttle (Bos taurus)
MDH1 reduces OA (Bos taurus)
NAD+ [cytosol]
Biological oxidations (Bos taurus)
Phase I - Functionalization of compounds (Bos taurus)
Ethanol oxidation (Bos taurus)
ADH5 oxidises S-HMGSH to S-FGSH (Bos taurus)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Bos taurus)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Bos taurus)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Bos taurus)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Bos taurus)
Glucuronidation (Bos taurus)
Formation of the active cofactor, UDP-glucuronate (Bos taurus)
UDP-glucose is oxidised to UDP-glucuronate (Bos taurus)
NAD+ [cytosol]
Methylation (Bos taurus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Bos taurus)
AHCY:NAD+ tetramer [cytosol] (Bos taurus)
AHCY:NAD+ [cytosol] (Bos taurus)
NAD+ [cytosol]
Inositol phosphate metabolism (Bos taurus)
Synthesis of IP2, IP, and Ins in the cytosol (Bos taurus)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Bos taurus)
ISYNA1:NAD+ [cytosol] (Bos taurus)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Bos taurus)
Carnitine synthesis (Bos taurus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Bos taurus)
NAD+ [cytosol]
Histidine catabolism (Bos taurus)
urocanate + H2O => 4-imidazolone-5-propionate (Bos taurus)
UROC1:NAD+ [cytosol] (Bos taurus)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Bos taurus)
Phenylalanine metabolism (Bos taurus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Bos taurus)
NAD+ [cytosol]
Serine biosynthesis (Bos taurus)
PHGDH tetramer dehydrogenates 3PG (Bos taurus)
NAD+ [cytosol]
Sulfur amino acid metabolism (Bos taurus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Bos taurus)
AHCY:NAD+ tetramer [cytosol] (Bos taurus)
AHCY:NAD+ [cytosol] (Bos taurus)
NAD+ [cytosol]
Metabolism of carbohydrates (Bos taurus)
Formation of xylulose-5-phosphate (Bos taurus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Bos taurus)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Bos taurus)
NAD+ [cytosol]
Fructose metabolism (Bos taurus)
Fructose biosynthesis (Bos taurus)
SORD oxidizes D-sorbitol to Fru (Bos taurus)
NAD+ [cytosol]
Fructose catabolism (Bos taurus)
ALDH1A1 oxidises GA to DGA (Bos taurus)
NAD+ [cytosol]
Galactose catabolism (Bos taurus)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Bos taurus)
GALE:NAD+ dimer [cytosol] (Bos taurus)
NAD+ [cytosol]
Glucose metabolism (Bos taurus)
Gluconeogenesis (Bos taurus)
GAPDH tetramers reduce 1,3BPG to GA3P (Bos taurus)
NAD+ [cytosol]
Glycolysis (Bos taurus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Bos taurus)
NAD+ [cytosol]
Metabolism of lipids (Bos taurus)
Biosynthesis of specialized proresolving mediators (SPMs) (Bos taurus)
Biosynthesis of DHA-derived SPMs (Bos taurus)
Biosynthesis of D-series resolvins (Bos taurus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Bos taurus)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Bos taurus)
Biosynthesis of E-series 18(S)-resolvins (Bos taurus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Bos taurus)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Bos taurus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Bos taurus)
NAD+ [cytosol]
Ketone body metabolism (Bos taurus)
Synthesis of Ketone Bodies (Bos taurus)
BDH2 dehydrogenates 3HBA (Bos taurus)
NAD+ [cytosol]
Metabolism of steroids (Bos taurus)
Bile acid and bile salt metabolism (Bos taurus)
Synthesis of bile acids and bile salts (Bos taurus)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Bos taurus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Bos taurus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Bos taurus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Bos taurus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Bos taurus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Bos taurus)
NAD+ [cytosol]
Cholesterol biosynthesis (Bos taurus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Bos taurus)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Bos taurus)
NAD+ [cytosol]
Metabolism of steroid hormones (Bos taurus)
Androgen biosynthesis (Bos taurus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Bos taurus)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Bos taurus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Bos taurus)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Bos taurus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Bos taurus)
NAD+ [cytosol]
Phospholipid metabolism (Bos taurus)
Glycerophospholipid biosynthesis (Bos taurus)
Synthesis of PA (Bos taurus)
DHAP is converted to G3P by GPD1/GPD1L (Bos taurus)
NAD+ [cytosol]
Sphingolipid metabolism (Bos taurus)
Sphingolipid catabolism (Bos taurus)
ALDH3A2-1 oxidises HD2NAL to PALM (Bos taurus)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Bos taurus)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Bos taurus)
NAD+ [cytosol]
Metabolism of nucleotides (Bos taurus)
Nucleotide biosynthesis (Bos taurus)
Purine ribonucleoside monophosphate biosynthesis (Bos taurus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Bos taurus)
NAD+ [cytosol]
Nucleotide catabolism (Bos taurus)
Purine catabolism (Bos taurus)
XDH dehydrogenates hypoxanthine to form xanthine (Bos taurus)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Bos taurus)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Bos taurus)
Metabolism of water-soluble vitamins and cofactors (Bos taurus)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Bos taurus)
Cobalamin (Cbl) metabolism (Bos taurus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Bos taurus)
NAD+ [cytosol]
Nicotinate metabolism (Bos taurus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Bos taurus)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Bos taurus)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Bos taurus)
NAD+ [cytosol]
Nicotinamide salvaging (Bos taurus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Bos taurus)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Bos taurus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Bos taurus)
NAD+ [cytosol]
Metabolism of proteins (Bos taurus)
Post-translational protein modification (Bos taurus)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Bos taurus)
Hypusine synthesis from eIF5A-lysine (Bos taurus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Bos taurus)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Bos taurus)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Bos taurus)
NAD+ [cytosol]
Sensory Perception (Bos taurus)
Visual phototransduction (Bos taurus)
The canonical retinoid cycle in rods (twilight vision) (Bos taurus)
RDH5 oxidises 11cROL to 11cRAL (Bos taurus)
NAD+ [cytosol]
Signal Transduction (Bos taurus)
Intracellular signaling by second messengers (Bos taurus)
PIP3 activates AKT signaling (Bos taurus)
PTEN Regulation (Bos taurus)
Regulation of PTEN stability and activity (Bos taurus)
TNKS and TNKS2 PARylate PTEN (Bos taurus)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Bos taurus)
Signaling by Retinoic Acid (Bos taurus)
RA biosynthesis pathway (Bos taurus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Bos taurus)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Bos taurus)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Bos taurus)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Bos taurus)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Bos taurus)
NAD+ [cytosol]
Signaling by WNT (Bos taurus)
TCF dependent signaling in response to WNT (Bos taurus)
Degradation of AXIN (Bos taurus)
Tankyrase ADP-ribosylates AXIN (Bos taurus)
NAD+ [cytosol]
Transport of small molecules (Bos taurus)
O2/CO2 exchange in erythrocytes (Bos taurus)
Erythrocytes take up carbon dioxide and release oxygen (Bos taurus)
CYB5Rs reduce MetHb to HbA (Bos taurus)
NAD+ [cytosol]
Drug ADME (Caenorhabditis elegans)
Abacavir ADME (Caenorhabditis elegans)
Abacavir metabolism (Caenorhabditis elegans)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Caenorhabditis elegans)
NAD+ [cytosol]
Azathioprine ADME (Caenorhabditis elegans)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Caenorhabditis elegans)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism (Caenorhabditis elegans)
Aerobic respiration and respiratory electron transport (Caenorhabditis elegans)
Pyruvate metabolism (Caenorhabditis elegans)
LDH tetramer oxidises LACT to PYR (Caenorhabditis elegans)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Caenorhabditis elegans)
NAD+ [cytosol]
Respiratory electron transport (Caenorhabditis elegans)
Malate-aspartate shuttle (Caenorhabditis elegans)
MDH1 reduces OA (Caenorhabditis elegans)
NAD+ [cytosol]
Biological oxidations (Caenorhabditis elegans)
Phase I - Functionalization of compounds (Caenorhabditis elegans)
Ethanol oxidation (Caenorhabditis elegans)
ADH5 oxidises S-HMGSH to S-FGSH (Caenorhabditis elegans)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Caenorhabditis elegans)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Caenorhabditis elegans)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Caenorhabditis elegans)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Caenorhabditis elegans)
Glucuronidation (Caenorhabditis elegans)
Formation of the active cofactor, UDP-glucuronate (Caenorhabditis elegans)
UDP-glucose is oxidised to UDP-glucuronate (Caenorhabditis elegans)
NAD+ [cytosol]
Methylation (Caenorhabditis elegans)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Caenorhabditis elegans)
AHCY:NAD+ tetramer [cytosol] (Caenorhabditis elegans)
AHCY:NAD+ [cytosol] (Caenorhabditis elegans)
NAD+ [cytosol]
Inositol phosphate metabolism (Caenorhabditis elegans)
Synthesis of IP2, IP, and Ins in the cytosol (Caenorhabditis elegans)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Caenorhabditis elegans)
ISYNA1:NAD+ [cytosol] (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Caenorhabditis elegans)
Carnitine synthesis (Caenorhabditis elegans)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Caenorhabditis elegans)
NAD+ [cytosol]
Histidine catabolism (Caenorhabditis elegans)
urocanate + H2O => 4-imidazolone-5-propionate (Caenorhabditis elegans)
UROC1:NAD+ [cytosol] (Caenorhabditis elegans)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Caenorhabditis elegans)
Phenylalanine metabolism (Caenorhabditis elegans)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Caenorhabditis elegans)
NAD+ [cytosol]
Serine biosynthesis (Caenorhabditis elegans)
PHGDH tetramer dehydrogenates 3PG (Caenorhabditis elegans)
NAD+ [cytosol]
Sulfur amino acid metabolism (Caenorhabditis elegans)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Caenorhabditis elegans)
AHCY:NAD+ tetramer [cytosol] (Caenorhabditis elegans)
AHCY:NAD+ [cytosol] (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of carbohydrates (Caenorhabditis elegans)
Formation of xylulose-5-phosphate (Caenorhabditis elegans)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Caenorhabditis elegans)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Caenorhabditis elegans)
NAD+ [cytosol]
Fructose metabolism (Caenorhabditis elegans)
Fructose biosynthesis (Caenorhabditis elegans)
SORD oxidizes D-sorbitol to Fru (Caenorhabditis elegans)
NAD+ [cytosol]
Fructose catabolism (Caenorhabditis elegans)
ALDH1A1 oxidises GA to DGA (Caenorhabditis elegans)
NAD+ [cytosol]
Galactose catabolism (Caenorhabditis elegans)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Caenorhabditis elegans)
GALE:NAD+ dimer [cytosol] (Caenorhabditis elegans)
NAD+ [cytosol]
Glucose metabolism (Caenorhabditis elegans)
Gluconeogenesis (Caenorhabditis elegans)
GAPDH tetramers reduce 1,3BPG to GA3P (Caenorhabditis elegans)
NAD+ [cytosol]
Glycolysis (Caenorhabditis elegans)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of lipids (Caenorhabditis elegans)
Metabolism of steroids (Caenorhabditis elegans)
Cholesterol biosynthesis (Caenorhabditis elegans)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Caenorhabditis elegans)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Caenorhabditis elegans)
NAD+ [cytosol]
Phospholipid metabolism (Caenorhabditis elegans)
Glycerophospholipid biosynthesis (Caenorhabditis elegans)
Synthesis of PA (Caenorhabditis elegans)
DHAP is converted to G3P by GPD1/GPD1L (Caenorhabditis elegans)
NAD+ [cytosol]
Sphingolipid metabolism (Caenorhabditis elegans)
Sphingolipid catabolism (Caenorhabditis elegans)
ALDH3A2-1 oxidises HD2NAL to PALM (Caenorhabditis elegans)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Caenorhabditis elegans)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of nucleotides (Caenorhabditis elegans)
Nucleotide biosynthesis (Caenorhabditis elegans)
Purine ribonucleoside monophosphate biosynthesis (Caenorhabditis elegans)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Caenorhabditis elegans)
NAD+ [cytosol]
Nucleotide catabolism (Caenorhabditis elegans)
Purine catabolism (Caenorhabditis elegans)
XDH dehydrogenates hypoxanthine to form xanthine (Caenorhabditis elegans)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Caenorhabditis elegans)
Metabolism of water-soluble vitamins and cofactors (Caenorhabditis elegans)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Caenorhabditis elegans)
Cobalamin (Cbl) metabolism (Caenorhabditis elegans)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Caenorhabditis elegans)
NAD+ [cytosol]
Nicotinate metabolism (Caenorhabditis elegans)
NADSYN1 hexamer amidates NAAD to NAD+ (Caenorhabditis elegans)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Caenorhabditis elegans)
NAD+ [cytosol]
Metabolism of proteins (Caenorhabditis elegans)
Post-translational protein modification (Caenorhabditis elegans)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Caenorhabditis elegans)
Hypusine synthesis from eIF5A-lysine (Caenorhabditis elegans)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Caenorhabditis elegans)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Caenorhabditis elegans)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Caenorhabditis elegans)
NAD+ [cytosol]
Signal Transduction (Caenorhabditis elegans)
Signaling by Nuclear Receptors (Caenorhabditis elegans)
Signaling by Retinoic Acid (Caenorhabditis elegans)
RA biosynthesis pathway (Caenorhabditis elegans)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Caenorhabditis elegans)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Caenorhabditis elegans)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Caenorhabditis elegans)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Caenorhabditis elegans)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Caenorhabditis elegans)
NAD+ [cytosol]
Cell Cycle (Canis familiaris)
Cell Cycle, Mitotic (Canis familiaris)
M Phase (Canis familiaris)
Mitotic Metaphase and Anaphase (Canis familiaris)
Mitotic Anaphase (Canis familiaris)
Nuclear Envelope (NE) Reassembly (Canis familiaris)
Initiation of Nuclear Envelope (NE) Reformation (Canis familiaris)
ANKLE2 is deacetylated by SIRT2 (Canis familiaris)
NAD+ [cytosol]
Drug ADME (Canis familiaris)
Abacavir ADME (Canis familiaris)
Abacavir metabolism (Canis familiaris)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Canis familiaris)
NAD+ [cytosol]
Azathioprine ADME (Canis familiaris)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Canis familiaris)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Canis familiaris)
NAD+ [cytosol]
Metabolism (Canis familiaris)
Aerobic respiration and respiratory electron transport (Canis familiaris)
Pyruvate metabolism (Canis familiaris)
LDH tetramer oxidises LACT to PYR (Canis familiaris)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Canis familiaris)
NAD+ [cytosol]
Respiratory electron transport (Canis familiaris)
Malate-aspartate shuttle (Canis familiaris)
MDH1 reduces OA (Canis familiaris)
NAD+ [cytosol]
Biological oxidations (Canis familiaris)
Phase I - Functionalization of compounds (Canis familiaris)
Ethanol oxidation (Canis familiaris)
ADH5 oxidises S-HMGSH to S-FGSH (Canis familiaris)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Canis familiaris)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Canis familiaris)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Canis familiaris)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Canis familiaris)
Glucuronidation (Canis familiaris)
Formation of the active cofactor, UDP-glucuronate (Canis familiaris)
UDP-glucose is oxidised to UDP-glucuronate (Canis familiaris)
NAD+ [cytosol]
Methylation (Canis familiaris)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Canis familiaris)
AHCY:NAD+ tetramer [cytosol] (Canis familiaris)
AHCY:NAD+ [cytosol] (Canis familiaris)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Canis familiaris)
Carnitine synthesis (Canis familiaris)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Canis familiaris)
NAD+ [cytosol]
Histidine catabolism (Canis familiaris)
urocanate + H2O => 4-imidazolone-5-propionate (Canis familiaris)
UROC1:NAD+ [cytosol] (Canis familiaris)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Canis familiaris)
Phenylalanine metabolism (Canis familiaris)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Canis familiaris)
NAD+ [cytosol]
Serine biosynthesis (Canis familiaris)
PHGDH tetramer dehydrogenates 3PG (Canis familiaris)
NAD+ [cytosol]
Sulfur amino acid metabolism (Canis familiaris)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Canis familiaris)
AHCY:NAD+ tetramer [cytosol] (Canis familiaris)
AHCY:NAD+ [cytosol] (Canis familiaris)
NAD+ [cytosol]
Metabolism of carbohydrates (Canis familiaris)
Formation of xylulose-5-phosphate (Canis familiaris)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Canis familiaris)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Canis familiaris)
NAD+ [cytosol]
Fructose metabolism (Canis familiaris)
Fructose biosynthesis (Canis familiaris)
SORD oxidizes D-sorbitol to Fru (Canis familiaris)
NAD+ [cytosol]
Fructose catabolism (Canis familiaris)
ALDH1A1 oxidises GA to DGA (Canis familiaris)
NAD+ [cytosol]
Galactose catabolism (Canis familiaris)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Canis familiaris)
GALE:NAD+ dimer [cytosol] (Canis familiaris)
NAD+ [cytosol]
Glucose metabolism (Canis familiaris)
Gluconeogenesis (Canis familiaris)
GAPDH tetramers reduce 1,3BPG to GA3P (Canis familiaris)
NAD+ [cytosol]
Glycolysis (Canis familiaris)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Canis familiaris)
NAD+ [cytosol]
Metabolism of lipids (Canis familiaris)
Biosynthesis of specialized proresolving mediators (SPMs) (Canis familiaris)
Biosynthesis of DHA-derived SPMs (Canis familiaris)
Biosynthesis of D-series resolvins (Canis familiaris)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Canis familiaris)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Canis familiaris)
Biosynthesis of E-series 18(S)-resolvins (Canis familiaris)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Canis familiaris)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Canis familiaris)
LXA4 is oxidised to 15k-LXA4 by HPGD (Canis familiaris)
NAD+ [cytosol]
Ketone body metabolism (Canis familiaris)
Synthesis of Ketone Bodies (Canis familiaris)
BDH2 dehydrogenates 3HBA (Canis familiaris)
NAD+ [cytosol]
Metabolism of steroids (Canis familiaris)
Bile acid and bile salt metabolism (Canis familiaris)
Synthesis of bile acids and bile salts (Canis familiaris)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Canis familiaris)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Canis familiaris)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Canis familiaris)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Canis familiaris)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Canis familiaris)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Canis familiaris)
NAD+ [cytosol]
Cholesterol biosynthesis (Canis familiaris)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Canis familiaris)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Canis familiaris)
NAD+ [cytosol]
Metabolism of steroid hormones (Canis familiaris)
Androgen biosynthesis (Canis familiaris)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Canis familiaris)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Canis familiaris)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Canis familiaris)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Canis familiaris)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Canis familiaris)
NAD+ [cytosol]
Phospholipid metabolism (Canis familiaris)
Glycerophospholipid biosynthesis (Canis familiaris)
Synthesis of PA (Canis familiaris)
DHAP is converted to G3P by GPD1/GPD1L (Canis familiaris)
NAD+ [cytosol]
Sphingolipid metabolism (Canis familiaris)
Sphingolipid catabolism (Canis familiaris)
ALDH3A2-1 oxidises HD2NAL to PALM (Canis familiaris)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Canis familiaris)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Canis familiaris)
NAD+ [cytosol]
Metabolism of nucleotides (Canis familiaris)
Nucleotide biosynthesis (Canis familiaris)
Purine ribonucleoside monophosphate biosynthesis (Canis familiaris)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Canis familiaris)
NAD+ [cytosol]
Nucleotide catabolism (Canis familiaris)
Purine catabolism (Canis familiaris)
XDH dehydrogenates hypoxanthine to form xanthine (Canis familiaris)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Canis familiaris)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Canis familiaris)
Metabolism of water-soluble vitamins and cofactors (Canis familiaris)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Canis familiaris)
Cobalamin (Cbl) metabolism (Canis familiaris)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Canis familiaris)
NAD+ [cytosol]
Nicotinate metabolism (Canis familiaris)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Canis familiaris)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Canis familiaris)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Canis familiaris)
NAD+ [cytosol]
Nicotinamide salvaging (Canis familiaris)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Canis familiaris)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Canis familiaris)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Canis familiaris)
NAD+ [cytosol]
Metabolism of proteins (Canis familiaris)
Post-translational protein modification (Canis familiaris)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Canis familiaris)
Hypusine synthesis from eIF5A-lysine (Canis familiaris)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Canis familiaris)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Canis familiaris)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Canis familiaris)
NAD+ [cytosol]
Sensory Perception (Canis familiaris)
Visual phototransduction (Canis familiaris)
The canonical retinoid cycle in rods (twilight vision) (Canis familiaris)
RDH5 oxidises 11cROL to 11cRAL (Canis familiaris)
NAD+ [cytosol]
Signal Transduction (Canis familiaris)
Intracellular signaling by second messengers (Canis familiaris)
PIP3 activates AKT signaling (Canis familiaris)
PTEN Regulation (Canis familiaris)
Regulation of PTEN stability and activity (Canis familiaris)
TNKS and TNKS2 PARylate PTEN (Canis familiaris)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Canis familiaris)
Signaling by Retinoic Acid (Canis familiaris)
RA biosynthesis pathway (Canis familiaris)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Canis familiaris)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Canis familiaris)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Canis familiaris)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Canis familiaris)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Canis familiaris)
NAD+ [cytosol]
Signaling by WNT (Canis familiaris)
TCF dependent signaling in response to WNT (Canis familiaris)
Degradation of AXIN (Canis familiaris)
Tankyrase ADP-ribosylates AXIN (Canis familiaris)
NAD+ [cytosol]
Transport of small molecules (Canis familiaris)
O2/CO2 exchange in erythrocytes (Canis familiaris)
Erythrocytes take up carbon dioxide and release oxygen (Canis familiaris)
CYB5Rs reduce MetHb to HbA (Canis familiaris)
NAD+ [cytosol]
Cell Cycle (Danio rerio)
Cell Cycle, Mitotic (Danio rerio)
M Phase (Danio rerio)
Mitotic Metaphase and Anaphase (Danio rerio)
Mitotic Anaphase (Danio rerio)
Nuclear Envelope (NE) Reassembly (Danio rerio)
Initiation of Nuclear Envelope (NE) Reformation (Danio rerio)
ANKLE2 is deacetylated by SIRT2 (Danio rerio)
NAD+ [cytosol]
Drug ADME (Danio rerio)
Abacavir ADME (Danio rerio)
Abacavir metabolism (Danio rerio)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Danio rerio)
NAD+ [cytosol]
Azathioprine ADME (Danio rerio)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Danio rerio)
NAD+ [cytosol]
Metabolism (Danio rerio)
Aerobic respiration and respiratory electron transport (Danio rerio)
Pyruvate metabolism (Danio rerio)
LDH tetramer oxidises LACT to PYR (Danio rerio)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Danio rerio)
NAD+ [cytosol]
Respiratory electron transport (Danio rerio)
Malate-aspartate shuttle (Danio rerio)
MDH1 reduces OA (Danio rerio)
NAD+ [cytosol]
Biological oxidations (Danio rerio)
Phase I - Functionalization of compounds (Danio rerio)
Ethanol oxidation (Danio rerio)
ADH5 oxidises S-HMGSH to S-FGSH (Danio rerio)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Danio rerio)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Danio rerio)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Danio rerio)
Glucuronidation (Danio rerio)
Formation of the active cofactor, UDP-glucuronate (Danio rerio)
UDP-glucose is oxidised to UDP-glucuronate (Danio rerio)
NAD+ [cytosol]
Methylation (Danio rerio)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Danio rerio)
AHCY:NAD+ tetramer [cytosol] (Danio rerio)
AHCY:NAD+ [cytosol] (Danio rerio)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Danio rerio)
Carnitine synthesis (Danio rerio)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Danio rerio)
NAD+ [cytosol]
Histidine catabolism (Danio rerio)
urocanate + H2O => 4-imidazolone-5-propionate (Danio rerio)
UROC1:NAD+ [cytosol] (Danio rerio)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Danio rerio)
Phenylalanine metabolism (Danio rerio)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Danio rerio)
NAD+ [cytosol]
Sulfur amino acid metabolism (Danio rerio)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Danio rerio)
AHCY:NAD+ tetramer [cytosol] (Danio rerio)
AHCY:NAD+ [cytosol] (Danio rerio)
NAD+ [cytosol]
Metabolism of carbohydrates (Danio rerio)
Formation of xylulose-5-phosphate (Danio rerio)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Danio rerio)
NAD+ [cytosol]
Galactose catabolism (Danio rerio)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Danio rerio)
GALE:NAD+ dimer [cytosol] (Danio rerio)
NAD+ [cytosol]
Glucose metabolism (Danio rerio)
Gluconeogenesis (Danio rerio)
GAPDH tetramers reduce 1,3BPG to GA3P (Danio rerio)
NAD+ [cytosol]
Glycolysis (Danio rerio)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Danio rerio)
NAD+ [cytosol]
Metabolism of lipids (Danio rerio)
Biosynthesis of specialized proresolving mediators (SPMs) (Danio rerio)
Biosynthesis of DHA-derived SPMs (Danio rerio)
Biosynthesis of D-series resolvins (Danio rerio)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Danio rerio)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Danio rerio)
Biosynthesis of E-series 18(S)-resolvins (Danio rerio)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Danio rerio)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Danio rerio)
LXA4 is oxidised to 15k-LXA4 by HPGD (Danio rerio)
NAD+ [cytosol]
Ketone body metabolism (Danio rerio)
Synthesis of Ketone Bodies (Danio rerio)
BDH2 dehydrogenates 3HBA (Danio rerio)
NAD+ [cytosol]
Metabolism of steroids (Danio rerio)
Bile acid and bile salt metabolism (Danio rerio)
Synthesis of bile acids and bile salts (Danio rerio)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Danio rerio)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Danio rerio)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Danio rerio)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Danio rerio)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Danio rerio)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Danio rerio)
NAD+ [cytosol]
Cholesterol biosynthesis (Danio rerio)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Danio rerio)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Danio rerio)
NAD+ [cytosol]
Metabolism of steroid hormones (Danio rerio)
Androgen biosynthesis (Danio rerio)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Danio rerio)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Danio rerio)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Danio rerio)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Danio rerio)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Danio rerio)
NAD+ [cytosol]
Phospholipid metabolism (Danio rerio)
Glycerophospholipid biosynthesis (Danio rerio)
Synthesis of PA (Danio rerio)
DHAP is converted to G3P by GPD1/GPD1L (Danio rerio)
NAD+ [cytosol]
Sphingolipid metabolism (Danio rerio)
Sphingolipid catabolism (Danio rerio)
ALDH3A2-1 oxidises HD2NAL to PALM (Danio rerio)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Danio rerio)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Danio rerio)
NAD+ [cytosol]
Metabolism of nucleotides (Danio rerio)
Nucleotide biosynthesis (Danio rerio)
Purine ribonucleoside monophosphate biosynthesis (Danio rerio)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Danio rerio)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Danio rerio)
Metabolism of water-soluble vitamins and cofactors (Danio rerio)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Danio rerio)
Cobalamin (Cbl) metabolism (Danio rerio)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Danio rerio)
NAD+ [cytosol]
Nicotinate metabolism (Danio rerio)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Danio rerio)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Danio rerio)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Danio rerio)
NAD+ [cytosol]
Nicotinamide salvaging (Danio rerio)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Danio rerio)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Danio rerio)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Danio rerio)
NAD+ [cytosol]
Metabolism of proteins (Danio rerio)
Post-translational protein modification (Danio rerio)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Danio rerio)
Hypusine synthesis from eIF5A-lysine (Danio rerio)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Danio rerio)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Danio rerio)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Danio rerio)
NAD+ [cytosol]
Sensory Perception (Danio rerio)
Visual phototransduction (Danio rerio)
The canonical retinoid cycle in rods (twilight vision) (Danio rerio)
RDH5 oxidises 11cROL to 11cRAL (Danio rerio)
NAD+ [cytosol]
Signal Transduction (Danio rerio)
Signaling by Nuclear Receptors (Danio rerio)
Signaling by Retinoic Acid (Danio rerio)
RA biosynthesis pathway (Danio rerio)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Danio rerio)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Danio rerio)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Danio rerio)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Danio rerio)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Danio rerio)
NAD+ [cytosol]
Transport of small molecules (Danio rerio)
O2/CO2 exchange in erythrocytes (Danio rerio)
Erythrocytes take up carbon dioxide and release oxygen (Danio rerio)
CYB5Rs reduce MetHb to HbA (Danio rerio)
NAD+ [cytosol]
Drug ADME (Dictyostelium discoideum)
Abacavir ADME (Dictyostelium discoideum)
Abacavir metabolism (Dictyostelium discoideum)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Dictyostelium discoideum)
NAD+ [cytosol]
Azathioprine ADME (Dictyostelium discoideum)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Dictyostelium discoideum)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism (Dictyostelium discoideum)
Aerobic respiration and respiratory electron transport (Dictyostelium discoideum)
Respiratory electron transport (Dictyostelium discoideum)
Malate-aspartate shuttle (Dictyostelium discoideum)
MDH1 reduces OA (Dictyostelium discoideum)
NAD+ [cytosol]
Biological oxidations (Dictyostelium discoideum)
Phase I - Functionalization of compounds (Dictyostelium discoideum)
Ethanol oxidation (Dictyostelium discoideum)
ADH5 oxidises S-HMGSH to S-FGSH (Dictyostelium discoideum)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Dictyostelium discoideum)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Dictyostelium discoideum)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Dictyostelium discoideum)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Dictyostelium discoideum)
Methylation (Dictyostelium discoideum)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Dictyostelium discoideum)
AHCY:NAD+ tetramer [cytosol] (Dictyostelium discoideum)
AHCY:NAD+ [cytosol] (Dictyostelium discoideum)
NAD+ [cytosol]
Inositol phosphate metabolism (Dictyostelium discoideum)
Synthesis of IP2, IP, and Ins in the cytosol (Dictyostelium discoideum)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Dictyostelium discoideum)
ISYNA1:NAD+ [cytosol] (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Dictyostelium discoideum)
Histidine catabolism (Dictyostelium discoideum)
urocanate + H2O => 4-imidazolone-5-propionate (Dictyostelium discoideum)
UROC1:NAD+ [cytosol] (Dictyostelium discoideum)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Dictyostelium discoideum)
Phenylalanine metabolism (Dictyostelium discoideum)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Dictyostelium discoideum)
NAD+ [cytosol]
Sulfur amino acid metabolism (Dictyostelium discoideum)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Dictyostelium discoideum)
AHCY:NAD+ tetramer [cytosol] (Dictyostelium discoideum)
AHCY:NAD+ [cytosol] (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of carbohydrates (Dictyostelium discoideum)
Fructose metabolism (Dictyostelium discoideum)
Fructose catabolism (Dictyostelium discoideum)
ALDH1A1 oxidises GA to DGA (Dictyostelium discoideum)
NAD+ [cytosol]
Galactose catabolism (Dictyostelium discoideum)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Dictyostelium discoideum)
GALE:NAD+ dimer [cytosol] (Dictyostelium discoideum)
NAD+ [cytosol]
Glucose metabolism (Dictyostelium discoideum)
Gluconeogenesis (Dictyostelium discoideum)
GAPDH tetramers reduce 1,3BPG to GA3P (Dictyostelium discoideum)
NAD+ [cytosol]
Glycolysis (Dictyostelium discoideum)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of lipids (Dictyostelium discoideum)
Metabolism of steroids (Dictyostelium discoideum)
Cholesterol biosynthesis (Dictyostelium discoideum)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Dictyostelium discoideum)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Dictyostelium discoideum)
NAD+ [cytosol]
Sphingolipid metabolism (Dictyostelium discoideum)
Sphingolipid catabolism (Dictyostelium discoideum)
ALDH3A2-1 oxidises HD2NAL to PALM (Dictyostelium discoideum)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Dictyostelium discoideum)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of nucleotides (Dictyostelium discoideum)
Nucleotide biosynthesis (Dictyostelium discoideum)
Purine ribonucleoside monophosphate biosynthesis (Dictyostelium discoideum)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Dictyostelium discoideum)
NAD+ [cytosol]
Nucleotide catabolism (Dictyostelium discoideum)
Purine catabolism (Dictyostelium discoideum)
XDH dehydrogenates hypoxanthine to form xanthine (Dictyostelium discoideum)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Dictyostelium discoideum)
Metabolism of water-soluble vitamins and cofactors (Dictyostelium discoideum)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Dictyostelium discoideum)
Cobalamin (Cbl) metabolism (Dictyostelium discoideum)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Dictyostelium discoideum)
NAD+ [cytosol]
Nicotinate metabolism (Dictyostelium discoideum)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Dictyostelium discoideum)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Dictyostelium discoideum)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Dictyostelium discoideum)
NAD+ [cytosol]
Nicotinamide salvaging (Dictyostelium discoideum)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Dictyostelium discoideum)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Dictyostelium discoideum)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Dictyostelium discoideum)
NAD+ [cytosol]
Metabolism of proteins (Dictyostelium discoideum)
Post-translational protein modification (Dictyostelium discoideum)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Dictyostelium discoideum)
Hypusine synthesis from eIF5A-lysine (Dictyostelium discoideum)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Dictyostelium discoideum)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Dictyostelium discoideum)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Dictyostelium discoideum)
NAD+ [cytosol]
Signal Transduction (Dictyostelium discoideum)
Signaling by Nuclear Receptors (Dictyostelium discoideum)
Signaling by Retinoic Acid (Dictyostelium discoideum)
RA biosynthesis pathway (Dictyostelium discoideum)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Dictyostelium discoideum)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Dictyostelium discoideum)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Dictyostelium discoideum)
NAD+ [cytosol]
Cell Cycle (Drosophila melanogaster)
Cell Cycle, Mitotic (Drosophila melanogaster)
M Phase (Drosophila melanogaster)
Mitotic Metaphase and Anaphase (Drosophila melanogaster)
Mitotic Anaphase (Drosophila melanogaster)
Nuclear Envelope (NE) Reassembly (Drosophila melanogaster)
Initiation of Nuclear Envelope (NE) Reformation (Drosophila melanogaster)
ANKLE2 is deacetylated by SIRT2 (Drosophila melanogaster)
NAD+ [cytosol]
Drug ADME (Drosophila melanogaster)
Abacavir ADME (Drosophila melanogaster)
Abacavir metabolism (Drosophila melanogaster)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Drosophila melanogaster)
NAD+ [cytosol]
Azathioprine ADME (Drosophila melanogaster)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Drosophila melanogaster)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism (Drosophila melanogaster)
Aerobic respiration and respiratory electron transport (Drosophila melanogaster)
Pyruvate metabolism (Drosophila melanogaster)
LDH tetramer oxidises LACT to PYR (Drosophila melanogaster)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Drosophila melanogaster)
NAD+ [cytosol]
Respiratory electron transport (Drosophila melanogaster)
Malate-aspartate shuttle (Drosophila melanogaster)
MDH1 reduces OA (Drosophila melanogaster)
NAD+ [cytosol]
Biological oxidations (Drosophila melanogaster)
Phase I - Functionalization of compounds (Drosophila melanogaster)
Ethanol oxidation (Drosophila melanogaster)
ADH5 oxidises S-HMGSH to S-FGSH (Drosophila melanogaster)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Drosophila melanogaster)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Drosophila melanogaster)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Drosophila melanogaster)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Drosophila melanogaster)
Glucuronidation (Drosophila melanogaster)
Formation of the active cofactor, UDP-glucuronate (Drosophila melanogaster)
UDP-glucose is oxidised to UDP-glucuronate (Drosophila melanogaster)
NAD+ [cytosol]
Methylation (Drosophila melanogaster)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Drosophila melanogaster)
AHCY:NAD+ tetramer [cytosol] (Drosophila melanogaster)
AHCY:NAD+ [cytosol] (Drosophila melanogaster)
NAD+ [cytosol]
Inositol phosphate metabolism (Drosophila melanogaster)
Synthesis of IP2, IP, and Ins in the cytosol (Drosophila melanogaster)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Drosophila melanogaster)
ISYNA1:NAD+ [cytosol] (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Drosophila melanogaster)
Phenylalanine and tyrosine metabolism (Drosophila melanogaster)
Phenylalanine metabolism (Drosophila melanogaster)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Drosophila melanogaster)
NAD+ [cytosol]
Serine biosynthesis (Drosophila melanogaster)
PHGDH tetramer dehydrogenates 3PG (Drosophila melanogaster)
NAD+ [cytosol]
Sulfur amino acid metabolism (Drosophila melanogaster)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Drosophila melanogaster)
AHCY:NAD+ tetramer [cytosol] (Drosophila melanogaster)
AHCY:NAD+ [cytosol] (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of carbohydrates (Drosophila melanogaster)
Formation of xylulose-5-phosphate (Drosophila melanogaster)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Drosophila melanogaster)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Drosophila melanogaster)
NAD+ [cytosol]
Fructose metabolism (Drosophila melanogaster)
Fructose biosynthesis (Drosophila melanogaster)
SORD oxidizes D-sorbitol to Fru (Drosophila melanogaster)
NAD+ [cytosol]
Fructose catabolism (Drosophila melanogaster)
ALDH1A1 oxidises GA to DGA (Drosophila melanogaster)
NAD+ [cytosol]
Galactose catabolism (Drosophila melanogaster)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Drosophila melanogaster)
GALE:NAD+ dimer [cytosol] (Drosophila melanogaster)
NAD+ [cytosol]
Glucose metabolism (Drosophila melanogaster)
Gluconeogenesis (Drosophila melanogaster)
GAPDH tetramers reduce 1,3BPG to GA3P (Drosophila melanogaster)
NAD+ [cytosol]
Glycolysis (Drosophila melanogaster)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of lipids (Drosophila melanogaster)
Biosynthesis of specialized proresolving mediators (SPMs) (Drosophila melanogaster)
Biosynthesis of DHA-derived SPMs (Drosophila melanogaster)
Biosynthesis of D-series resolvins (Drosophila melanogaster)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Drosophila melanogaster)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Drosophila melanogaster)
Biosynthesis of E-series 18(S)-resolvins (Drosophila melanogaster)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Drosophila melanogaster)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Drosophila melanogaster)
LXA4 is oxidised to 15k-LXA4 by HPGD (Drosophila melanogaster)
NAD+ [cytosol]
Phospholipid metabolism (Drosophila melanogaster)
Glycerophospholipid biosynthesis (Drosophila melanogaster)
Synthesis of PA (Drosophila melanogaster)
DHAP is converted to G3P by GPD1/GPD1L (Drosophila melanogaster)
NAD+ [cytosol]
Sphingolipid metabolism (Drosophila melanogaster)
Sphingolipid catabolism (Drosophila melanogaster)
ALDH3A2-1 oxidises HD2NAL to PALM (Drosophila melanogaster)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Drosophila melanogaster)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of nucleotides (Drosophila melanogaster)
Nucleotide biosynthesis (Drosophila melanogaster)
Purine ribonucleoside monophosphate biosynthesis (Drosophila melanogaster)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Drosophila melanogaster)
NAD+ [cytosol]
Nucleotide catabolism (Drosophila melanogaster)
Purine catabolism (Drosophila melanogaster)
XDH dehydrogenates hypoxanthine to form xanthine (Drosophila melanogaster)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Drosophila melanogaster)
Metabolism of water-soluble vitamins and cofactors (Drosophila melanogaster)
Nicotinate metabolism (Drosophila melanogaster)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Drosophila melanogaster)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Drosophila melanogaster)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Drosophila melanogaster)
NAD+ [cytosol]
Nicotinamide salvaging (Drosophila melanogaster)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Drosophila melanogaster)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Drosophila melanogaster)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Drosophila melanogaster)
NAD+ [cytosol]
Metabolism of proteins (Drosophila melanogaster)
Post-translational protein modification (Drosophila melanogaster)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Drosophila melanogaster)
Hypusine synthesis from eIF5A-lysine (Drosophila melanogaster)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Drosophila melanogaster)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Drosophila melanogaster)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Drosophila melanogaster)
NAD+ [cytosol]
Signal Transduction (Drosophila melanogaster)
Signaling by Nuclear Receptors (Drosophila melanogaster)
Signaling by Retinoic Acid (Drosophila melanogaster)
RA biosynthesis pathway (Drosophila melanogaster)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Drosophila melanogaster)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Drosophila melanogaster)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Drosophila melanogaster)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Drosophila melanogaster)
NAD+ [cytosol]
Cell Cycle (Gallus gallus)
Cell Cycle, Mitotic (Gallus gallus)
M Phase (Gallus gallus)
Mitotic Metaphase and Anaphase (Gallus gallus)
Mitotic Anaphase (Gallus gallus)
Nuclear Envelope (NE) Reassembly (Gallus gallus)
Initiation of Nuclear Envelope (NE) Reformation (Gallus gallus)
ANKLE2 is deacetylated by SIRT2 (Gallus gallus)
NAD+ [cytosol]
Drug ADME (Gallus gallus)
Abacavir ADME (Gallus gallus)
Abacavir metabolism (Gallus gallus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Gallus gallus)
NAD+ [cytosol]
Azathioprine ADME (Gallus gallus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Gallus gallus)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Gallus gallus)
NAD+ [cytosol]
Metabolism (Gallus gallus)
Carbohydrate metabolism (Gallus gallus)
Gluconeogenesis (Gallus gallus)
1,3-bisphosphoglycerate + NADH + H+ <=> glyceraldehyde 3-phosphate + NAD+ + phosphate (Gallus gallus)
NAD+ [cytosol]
malate + NAD+ <=> oxaloacetate + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
Glycolysis (Gallus gallus)
glyceraldehyde 3-phosphate + NAD+ + phosphate <=> 1,3-bisphosphoglycerate + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
Lipid metabolism (Gallus gallus)
Sphingolipid metabolism (Gallus gallus)
dihydroceramide + NAD(P)H + H+ + O2 => ceramide + NAD(P)+ + H2O (Gallus gallus)
NAD(P)+ [cytosol]
NAD+ [cytosol]
Nucleotide metabolism (Gallus gallus)
Purine metabolism (Gallus gallus)
De novo synthesis of GMP (Gallus gallus)
inosine 5'-monophosphate (IMP) + NAD+ + H2O => xanthosine 5'-monophosphate (XMP) + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
Urate synthesis (Gallus gallus)
hypoxanthine + H2O + NAD+ => xanthine + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
xanthine + H2O + NAD+ => urate + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
Pyruvate metabolism (Gallus gallus)
lactate + NAD+ <=> pyruvate + NADH + H+ (Gallus gallus)
NAD+ [cytosol]
pyruvate + NADH + H+ <=> lactate + NAD+ (Gallus gallus)
NAD+ [cytosol]
Metabolism of proteins (Gallus gallus)
Post-translational protein modification (Gallus gallus)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Gallus gallus)
Hypusine synthesis from eIF5A-lysine (Gallus gallus)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Gallus gallus)
NAD+ [cytosol]
Sensory Perception (Gallus gallus)
Visual phototransduction (Gallus gallus)
The canonical retinoid cycle in rods (twilight vision) (Gallus gallus)
RDH5 oxidises 11cROL to 11cRAL (Gallus gallus)
NAD+ [cytosol]
Signal Transduction (Gallus gallus)
Intracellular signaling by second messengers (Gallus gallus)
PIP3 activates AKT signaling (Gallus gallus)
PTEN Regulation (Gallus gallus)
Regulation of PTEN stability and activity (Gallus gallus)
TNKS and TNKS2 PARylate PTEN (Gallus gallus)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Gallus gallus)
Signaling by Retinoic Acid (Gallus gallus)
RA biosynthesis pathway (Gallus gallus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Gallus gallus)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Gallus gallus)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Gallus gallus)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Gallus gallus)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Gallus gallus)
NAD+ [cytosol]
Signaling by WNT (Gallus gallus)
TCF dependent signaling in response to WNT (Gallus gallus)
Degradation of AXIN (Gallus gallus)
Tankyrase ADP-ribosylates AXIN (Gallus gallus)
NAD+ [cytosol]
Transport of small molecules (Gallus gallus)
O2/CO2 exchange in erythrocytes (Gallus gallus)
Erythrocytes take up carbon dioxide and release oxygen (Gallus gallus)
CYB5Rs reduce MetHb to HbA (Gallus gallus)
NAD+ [cytosol]
Cell Cycle (Homo sapiens)
Cell Cycle, Mitotic (Homo sapiens)
M Phase (Homo sapiens)
Mitotic Metaphase and Anaphase (Homo sapiens)
Mitotic Anaphase (Homo sapiens)
Nuclear Envelope (NE) Reassembly (Homo sapiens)
Initiation of Nuclear Envelope (NE) Reformation (Homo sapiens)
ANKLE2 is deacetylated by SIRT2 (Homo sapiens)
NAD+ [cytosol]
Disease (Homo sapiens)
Diseases of metabolism (Homo sapiens)
Diseases of glycosylation (Homo sapiens)
Diseases associated with glycosylation precursor biosynthesis (Homo sapiens)
Defective GALE causes EDG (Homo sapiens)
Defective GALE does not epimerise UDP-Gal to UDP-Glc (Homo sapiens)
GALE V94M:GALE V94M:NAD+:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Metabolic disorders of biological oxidation enzymes (Homo sapiens)
Defective AHCY causes HMAHCHD (Homo sapiens)
Defective AHCY does not hydrolyse AdoHcy (Homo sapiens)
AHCY mutants:NAD+ tetramer [cytosol] (Homo sapiens)
AHCY mutants:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Diseases of the neuronal system (Homo sapiens)
Diseases associated with visual transduction (Homo sapiens)
Retinoid cycle disease events (Homo sapiens)
Defective visual phototransduction due to RDH5 loss of function (Homo sapiens)
Defective RDH5 does not oxidise 11cROL to 11cRAL and causes RPA (Homo sapiens)
NAD+ [cytosol]
Infectious disease (Homo sapiens)
Bacterial Infection Pathways (Homo sapiens)
Infection with Mycobacterium tuberculosis (Homo sapiens)
Escape of Mtb from the phagocyte (Homo sapiens)
Phagocyte cell death caused by cytosolic Mtb (Homo sapiens)
CpnT hydrolyses NAD+ (Homo sapiens)
NAD+ [cytosol]
Latent infection - Other responses of Mtb to phagocytosis (Homo sapiens)
Cell redox homeostasis (Homo sapiens)
LpdC dimer reactivates DlaT (Homo sapiens)
NAD+ [cytosol]
Tolerance by Mtb to nitric oxide produced by macrophages (Homo sapiens)
MscR reduces nitrosomycothiol to ammonia (Homo sapiens)
NAD+ [cytosol]
Uptake and actions of bacterial toxins (Homo sapiens)
Uptake and function of diphtheria toxin (Homo sapiens)
DT fragment A ADP-ribosylates target cell EEF (Homo sapiens)
NAD+ [cytosol]
Viral Infection Pathways (Homo sapiens)
SARS-CoV Infections (Homo sapiens)
SARS-CoV-1 Infection (Homo sapiens)
Translation of Structural Proteins (Homo sapiens)
Maturation of nucleoprotein (Homo sapiens)
Nucleoprotein is ADP-ribosylated (Homo sapiens)
NAD+ [cytosol]
SARS-CoV-2 Infection (Homo sapiens)
Late SARS-CoV-2 Infection Events (Homo sapiens)
Translation of Structural Proteins (Homo sapiens)
Maturation of nucleoprotein (Homo sapiens)
Nucleoprotein is ADP-ribosylated (Homo sapiens)
NAD+ [cytosol]
Drug ADME (Homo sapiens)
Abacavir ADME (Homo sapiens)
Abacavir metabolism (Homo sapiens)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Homo sapiens)
NAD+ [cytosol]
Azathioprine ADME (Homo sapiens)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Homo sapiens)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Homo sapiens)
NAD+ [cytosol]
Metabolism (Homo sapiens)
Aerobic respiration and respiratory electron transport (Homo sapiens)
Pyruvate metabolism (Homo sapiens)
LDH tetramer oxidises LACT to PYR (Homo sapiens)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Homo sapiens)
NAD+ [cytosol]
Respiratory electron transport (Homo sapiens)
Malate-aspartate shuttle (Homo sapiens)
MDH1 reduces OA (Homo sapiens)
NAD+ [cytosol]
Biological oxidations (Homo sapiens)
Phase I - Functionalization of compounds (Homo sapiens)
Ethanol oxidation (Homo sapiens)
ADH5 oxidises S-HMGSH to S-FGSH (Homo sapiens)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Homo sapiens)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Homo sapiens)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Homo sapiens)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Homo sapiens)
Glucuronidation (Homo sapiens)
Formation of the active cofactor, UDP-glucuronate (Homo sapiens)
UDP-glucose is oxidised to UDP-glucuronate (Homo sapiens)
NAD+ [cytosol]
Methylation (Homo sapiens)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Homo sapiens)
AHCY:NAD+ tetramer [cytosol] (Homo sapiens)
AHCY:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Inositol phosphate metabolism (Homo sapiens)
Synthesis of IP2, IP, and Ins in the cytosol (Homo sapiens)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Homo sapiens)
ISYNA1:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Homo sapiens)
Carnitine synthesis (Homo sapiens)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Homo sapiens)
NAD+ [cytosol]
Histidine catabolism (Homo sapiens)
urocanate + H2O => 4-imidazolone-5-propionate (Homo sapiens)
UROC1:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Homo sapiens)
Phenylalanine metabolism (Homo sapiens)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Homo sapiens)
NAD+ [cytosol]
Serine biosynthesis (Homo sapiens)
PHGDH tetramer dehydrogenates 3PG (Homo sapiens)
NAD+ [cytosol]
Sulfur amino acid metabolism (Homo sapiens)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Homo sapiens)
AHCY:NAD+ tetramer [cytosol] (Homo sapiens)
AHCY:NAD+ [cytosol] (Homo sapiens)
NAD+ [cytosol]
Tryptophan catabolism (Homo sapiens)
2-aminomuconate semialdehyde + NAD+ + H2O => aminomuconate + NADH + H+ (Homo sapiens)
NAD+ [cytosol]
Metabolism of carbohydrates (Homo sapiens)
Formation of xylulose-5-phosphate (Homo sapiens)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Homo sapiens)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Homo sapiens)
NAD+ [cytosol]
Fructose metabolism (Homo sapiens)
Fructose biosynthesis (Homo sapiens)
SORD oxidizes D-sorbitol to Fru (Homo sapiens)
NAD+ [cytosol]
Fructose catabolism (Homo sapiens)
ALDH1A1 oxidises GA to DGA (Homo sapiens)
NAD+ [cytosol]
Galactose catabolism (Homo sapiens)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Homo sapiens)
GALE:NAD+ dimer [cytosol] (Homo sapiens)
NAD+ [cytosol]
Glucose metabolism (Homo sapiens)
Gluconeogenesis (Homo sapiens)
GAPDH tetramers reduce 1,3BPG to GA3P (Homo sapiens)
NAD+ [cytosol]
Glycolysis (Homo sapiens)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Homo sapiens)
NAD+ [cytosol]
Metabolism of lipids (Homo sapiens)
Biosynthesis of specialized proresolving mediators (SPMs) (Homo sapiens)
Biosynthesis of DHA-derived SPMs (Homo sapiens)
Biosynthesis of D-series resolvins (Homo sapiens)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Homo sapiens)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Homo sapiens)
Biosynthesis of E-series 18(S)-resolvins (Homo sapiens)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Homo sapiens)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Homo sapiens)
15k-LXA4 is reduced to dhk-LXA4 by PTGR1 (Homo sapiens)
NAD+ [cytosol]
LXA4 is oxidised to 15k-LXA4 by HPGD (Homo sapiens)
NAD+ [cytosol]
Fatty acid metabolism (Homo sapiens)
Arachidonate metabolism (Homo sapiens)
Synthesis of 15-eicosatetraenoic acid derivatives (Homo sapiens)
15S-HETE is oxidised to 15-oxoETE by 15-HEDH (Homo sapiens)
NAD(P)+ [cytosol]
NAD+ [cytosol]
Synthesis of Prostaglandins (PG) and Thromboxanes (TX) (Homo sapiens)
PGD2/E2/F2a is oxidised to 15k-PGD2/E2/F2a by HPGD (Homo sapiens)
NAD+ [cytosol]
Ketone body metabolism (Homo sapiens)
Synthesis of Ketone Bodies (Homo sapiens)
BDH2 dehydrogenates 3HBA (Homo sapiens)
NAD+ [cytosol]
Metabolism of steroids (Homo sapiens)
Bile acid and bile salt metabolism (Homo sapiens)
Synthesis of bile acids and bile salts (Homo sapiens)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Homo sapiens)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Homo sapiens)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Homo sapiens)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Homo sapiens)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Homo sapiens)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Homo sapiens)
NAD+ [cytosol]
Cholesterol biosynthesis (Homo sapiens)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Homo sapiens)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Homo sapiens)
NAD+ [cytosol]
Metabolism of steroid hormones (Homo sapiens)
Androgen biosynthesis (Homo sapiens)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Homo sapiens)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Homo sapiens)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Homo sapiens)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Homo sapiens)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Homo sapiens)
NAD+ [cytosol]
Phospholipid metabolism (Homo sapiens)
Glycerophospholipid biosynthesis (Homo sapiens)
Synthesis of PA (Homo sapiens)
DHAP is converted to G3P by GPD1/GPD1L (Homo sapiens)
NAD+ [cytosol]
Sphingolipid metabolism (Homo sapiens)
Sphingolipid catabolism (Homo sapiens)
ALDH3A2-1 oxidises HD2NAL to PALM (Homo sapiens)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Homo sapiens)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Homo sapiens)
NAD+ [cytosol]
Metabolism of nucleotides (Homo sapiens)
Nucleotide biosynthesis (Homo sapiens)
Purine ribonucleoside monophosphate biosynthesis (Homo sapiens)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Homo sapiens)
NAD+ [cytosol]
Nucleotide catabolism (Homo sapiens)
Purine catabolism (Homo sapiens)
XDH dehydrogenates hypoxanthine to form xanthine (Homo sapiens)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Homo sapiens)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Homo sapiens)
Metabolism of fat-soluble vitamins (Homo sapiens)
Retinoid metabolism and transport (Homo sapiens)
RETSAT reduces atROL to at-13,14-dhROL (Homo sapiens)
NAD+ [cytosol]
Metabolism of water-soluble vitamins and cofactors (Homo sapiens)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Homo sapiens)
Cobalamin (Cbl) metabolism (Homo sapiens)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Homo sapiens)
NAD+ [cytosol]
Nicotinate metabolism (Homo sapiens)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Homo sapiens)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Homo sapiens)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Homo sapiens)
NAD+ [cytosol]
Nicotinamide salvaging (Homo sapiens)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Homo sapiens)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Homo sapiens)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Homo sapiens)
NAD+ [cytosol]
Metabolism of RNA (Homo sapiens)
tRNA processing (Homo sapiens)
tRNA modification in the nucleus and cytosol (Homo sapiens)
DUS2:EPRS reduces uridine to dihydrouridine in tRNAs (Homo sapiens)
NAD(P)+ [cytosol]
NAD+ [cytosol]
Metabolism of proteins (Homo sapiens)
Post-translational protein modification (Homo sapiens)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Homo sapiens)
Hypusine synthesis from eIF5A-lysine (Homo sapiens)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Homo sapiens)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Homo sapiens)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Homo sapiens)
NAD+ [cytosol]
Sensory Perception (Homo sapiens)
Visual phototransduction (Homo sapiens)
Retinoid metabolism and transport (Homo sapiens)
RETSAT reduces atROL to at-13,14-dhROL (Homo sapiens)
NAD+ [cytosol]
The canonical retinoid cycle in rods (twilight vision) (Homo sapiens)
RDH5 oxidises 11cROL to 11cRAL (Homo sapiens)
NAD+ [cytosol]
Signal Transduction (Homo sapiens)
Intracellular signaling by second messengers (Homo sapiens)
PIP3 activates AKT signaling (Homo sapiens)
PTEN Regulation (Homo sapiens)
Regulation of PTEN stability and activity (Homo sapiens)
TNKS and TNKS2 PARylate PTEN (Homo sapiens)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Homo sapiens)
Signaling by Retinoic Acid (Homo sapiens)
RA biosynthesis pathway (Homo sapiens)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Homo sapiens)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Homo sapiens)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Homo sapiens)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Homo sapiens)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Homo sapiens)
NAD+ [cytosol]
Signaling by WNT (Homo sapiens)
TCF dependent signaling in response to WNT (Homo sapiens)
Degradation of AXIN (Homo sapiens)
Tankyrase ADP-ribosylates AXIN (Homo sapiens)
NAD+ [cytosol]
Transport of small molecules (Homo sapiens)
O2/CO2 exchange in erythrocytes (Homo sapiens)
Erythrocytes take up carbon dioxide and release oxygen (Homo sapiens)
CYB5Rs reduce MetHb to HbA (Homo sapiens)
NAD+ [cytosol]
Cell Cycle (Mus musculus)
Cell Cycle, Mitotic (Mus musculus)
M Phase (Mus musculus)
Mitotic Metaphase and Anaphase (Mus musculus)
Mitotic Anaphase (Mus musculus)
Nuclear Envelope (NE) Reassembly (Mus musculus)
Initiation of Nuclear Envelope (NE) Reformation (Mus musculus)
ANKLE2 is deacetylated by SIRT2 (Mus musculus)
NAD+ [cytosol]
Drug ADME (Mus musculus)
Abacavir ADME (Mus musculus)
Abacavir metabolism (Mus musculus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Mus musculus)
NAD+ [cytosol]
Azathioprine ADME (Mus musculus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Mus musculus)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Mus musculus)
NAD+ [cytosol]
Metabolism (Mus musculus)
Aerobic respiration and respiratory electron transport (Mus musculus)
Pyruvate metabolism (Mus musculus)
LDH tetramer oxidises LACT to PYR (Mus musculus)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Mus musculus)
NAD+ [cytosol]
Respiratory electron transport (Mus musculus)
Malate-aspartate shuttle (Mus musculus)
MDH1 reduces OA (Mus musculus)
NAD+ [cytosol]
Biological oxidations (Mus musculus)
Phase I - Functionalization of compounds (Mus musculus)
Ethanol oxidation (Mus musculus)
ADH5 oxidises S-HMGSH to S-FGSH (Mus musculus)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Mus musculus)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Mus musculus)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Mus musculus)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Mus musculus)
Glucuronidation (Mus musculus)
Formation of the active cofactor, UDP-glucuronate (Mus musculus)
UDP-glucose is oxidised to UDP-glucuronate (Mus musculus)
NAD+ [cytosol]
Methylation (Mus musculus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Mus musculus)
AHCY:NAD+ tetramer [cytosol] (Mus musculus)
AHCY:NAD+ [cytosol] (Mus musculus)
NAD+ [cytosol]
Inositol phosphate metabolism (Mus musculus)
Synthesis of IP2, IP, and Ins in the cytosol (Mus musculus)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Mus musculus)
ISYNA1:NAD+ [cytosol] (Mus musculus)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Mus musculus)
Carnitine synthesis (Mus musculus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Mus musculus)
NAD+ [cytosol]
Histidine catabolism (Mus musculus)
urocanate + H2O => 4-imidazolone-5-propionate (Mus musculus)
UROC1:NAD+ [cytosol] (Mus musculus)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Mus musculus)
Phenylalanine metabolism (Mus musculus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Mus musculus)
NAD+ [cytosol]
Serine biosynthesis (Mus musculus)
PHGDH tetramer dehydrogenates 3PG (Mus musculus)
NAD+ [cytosol]
Sulfur amino acid metabolism (Mus musculus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Mus musculus)
AHCY:NAD+ tetramer [cytosol] (Mus musculus)
AHCY:NAD+ [cytosol] (Mus musculus)
NAD+ [cytosol]
Metabolism of carbohydrates (Mus musculus)
Formation of xylulose-5-phosphate (Mus musculus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Mus musculus)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Mus musculus)
NAD+ [cytosol]
Fructose metabolism (Mus musculus)
Fructose biosynthesis (Mus musculus)
SORD oxidizes D-sorbitol to Fru (Mus musculus)
NAD+ [cytosol]
Fructose catabolism (Mus musculus)
ALDH1A1 oxidises GA to DGA (Mus musculus)
NAD+ [cytosol]
Galactose catabolism (Mus musculus)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Mus musculus)
GALE:NAD+ dimer [cytosol] (Mus musculus)
NAD+ [cytosol]
Glucose metabolism (Mus musculus)
Gluconeogenesis (Mus musculus)
GAPDH tetramers reduce 1,3BPG to GA3P (Mus musculus)
NAD+ [cytosol]
Glycolysis (Mus musculus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Mus musculus)
NAD+ [cytosol]
Metabolism of lipids (Mus musculus)
Biosynthesis of specialized proresolving mediators (SPMs) (Mus musculus)
Biosynthesis of DHA-derived SPMs (Mus musculus)
Biosynthesis of D-series resolvins (Mus musculus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Mus musculus)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Mus musculus)
Biosynthesis of E-series 18(S)-resolvins (Mus musculus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Mus musculus)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Mus musculus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Mus musculus)
NAD+ [cytosol]
Ketone body metabolism (Mus musculus)
Synthesis of Ketone Bodies (Mus musculus)
BDH2 dehydrogenates 3HBA (Mus musculus)
NAD+ [cytosol]
Metabolism of steroids (Mus musculus)
Bile acid and bile salt metabolism (Mus musculus)
Synthesis of bile acids and bile salts (Mus musculus)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Mus musculus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Mus musculus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Mus musculus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Mus musculus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Mus musculus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Mus musculus)
NAD+ [cytosol]
Cholesterol biosynthesis (Mus musculus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Mus musculus)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Mus musculus)
NAD+ [cytosol]
Metabolism of steroid hormones (Mus musculus)
Androgen biosynthesis (Mus musculus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Mus musculus)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Mus musculus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Mus musculus)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Mus musculus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Mus musculus)
NAD+ [cytosol]
Phospholipid metabolism (Mus musculus)
Glycerophospholipid biosynthesis (Mus musculus)
Synthesis of PA (Mus musculus)
DHAP is converted to G3P by GPD1/GPD1L (Mus musculus)
NAD+ [cytosol]
Sphingolipid metabolism (Mus musculus)
Sphingolipid catabolism (Mus musculus)
ALDH3A2-1 oxidises HD2NAL to PALM (Mus musculus)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Mus musculus)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Mus musculus)
NAD+ [cytosol]
Metabolism of nucleotides (Mus musculus)
Nucleotide biosynthesis (Mus musculus)
Purine ribonucleoside monophosphate biosynthesis (Mus musculus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Mus musculus)
NAD+ [cytosol]
Nucleotide catabolism (Mus musculus)
Purine catabolism (Mus musculus)
XDH dehydrogenates hypoxanthine to form xanthine (Mus musculus)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Mus musculus)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Mus musculus)
Metabolism of water-soluble vitamins and cofactors (Mus musculus)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Mus musculus)
Cobalamin (Cbl) metabolism (Mus musculus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Mus musculus)
NAD+ [cytosol]
Nicotinate metabolism (Mus musculus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Mus musculus)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Mus musculus)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Mus musculus)
NAD+ [cytosol]
Nicotinamide salvaging (Mus musculus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Mus musculus)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Mus musculus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Mus musculus)
NAD+ [cytosol]
Metabolism of proteins (Mus musculus)
Post-translational protein modification (Mus musculus)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Mus musculus)
Hypusine synthesis from eIF5A-lysine (Mus musculus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Mus musculus)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Mus musculus)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Mus musculus)
NAD+ [cytosol]
Sensory Perception (Mus musculus)
Visual phototransduction (Mus musculus)
The canonical retinoid cycle in rods (twilight vision) (Mus musculus)
RDH5 oxidises 11cROL to 11cRAL (Mus musculus)
NAD+ [cytosol]
Signal Transduction (Mus musculus)
Intracellular signaling by second messengers (Mus musculus)
PIP3 activates AKT signaling (Mus musculus)
PTEN Regulation (Mus musculus)
Regulation of PTEN stability and activity (Mus musculus)
TNKS and TNKS2 PARylate PTEN (Mus musculus)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Mus musculus)
Signaling by Retinoic Acid (Mus musculus)
RA biosynthesis pathway (Mus musculus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Mus musculus)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Mus musculus)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Mus musculus)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Mus musculus)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Mus musculus)
NAD+ [cytosol]
Signaling by WNT (Mus musculus)
TCF dependent signaling in response to WNT (Mus musculus)
Degradation of AXIN (Mus musculus)
Tankyrase ADP-ribosylates AXIN (Mus musculus)
NAD+ [cytosol]
Transport of small molecules (Mus musculus)
O2/CO2 exchange in erythrocytes (Mus musculus)
Erythrocytes take up carbon dioxide and release oxygen (Mus musculus)
CYB5Rs reduce MetHb to HbA (Mus musculus)
NAD+ [cytosol]
Mycobacterium tuberculosis biological processes (Mycobacterium tuberculosis)
Chorismate via Shikimate Pathway (Mycobacterium tuberculosis)
DHQ from DAHP dephosphorylation (Mycobacterium tuberculosis)
NAD+ [cytosol]
Mycothiol metabolism (Mycobacterium tuberculosis)
Mycothiol-dependent detoxification (Mycobacterium tuberculosis)
mycothiol binds formaldehyde and is dehydrogenated (Mycobacterium tuberculosis)
NAD+ [cytosol]
Drug ADME (Plasmodium falciparum)
Azathioprine ADME (Plasmodium falciparum)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism (Plasmodium falciparum)
Inositol phosphate metabolism (Plasmodium falciparum)
Synthesis of IP2, IP, and Ins in the cytosol (Plasmodium falciparum)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Plasmodium falciparum)
ISYNA1:NAD+ [cytosol] (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism of carbohydrates (Plasmodium falciparum)
Glucose metabolism (Plasmodium falciparum)
Gluconeogenesis (Plasmodium falciparum)
GAPDH tetramers reduce 1,3BPG to GA3P (Plasmodium falciparum)
NAD+ [cytosol]
Glycolysis (Plasmodium falciparum)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism of lipids (Plasmodium falciparum)
Phospholipid metabolism (Plasmodium falciparum)
Glycerophospholipid biosynthesis (Plasmodium falciparum)
Synthesis of PA (Plasmodium falciparum)
DHAP is converted to G3P by GPD1/GPD1L (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism of nucleotides (Plasmodium falciparum)
Nucleotide biosynthesis (Plasmodium falciparum)
Purine ribonucleoside monophosphate biosynthesis (Plasmodium falciparum)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Plasmodium falciparum)
Metabolism of water-soluble vitamins and cofactors (Plasmodium falciparum)
Nicotinate metabolism (Plasmodium falciparum)
NADSYN1 hexamer amidates NAAD to NAD+ (Plasmodium falciparum)
NAD+ [cytosol]
Metabolism of proteins (Plasmodium falciparum)
Post-translational protein modification (Plasmodium falciparum)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Plasmodium falciparum)
Hypusine synthesis from eIF5A-lysine (Plasmodium falciparum)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Plasmodium falciparum)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Plasmodium falciparum)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Plasmodium falciparum)
NAD+ [cytosol]
Cell Cycle (Rattus norvegicus)
Cell Cycle, Mitotic (Rattus norvegicus)
M Phase (Rattus norvegicus)
Mitotic Metaphase and Anaphase (Rattus norvegicus)
Mitotic Anaphase (Rattus norvegicus)
Nuclear Envelope (NE) Reassembly (Rattus norvegicus)
Initiation of Nuclear Envelope (NE) Reformation (Rattus norvegicus)
ANKLE2 is deacetylated by SIRT2 (Rattus norvegicus)
NAD+ [cytosol]
Drug ADME (Rattus norvegicus)
Abacavir ADME (Rattus norvegicus)
Abacavir metabolism (Rattus norvegicus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Rattus norvegicus)
NAD+ [cytosol]
Azathioprine ADME (Rattus norvegicus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Rattus norvegicus)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Rattus norvegicus)
NAD+ [cytosol]
Metabolism (Rattus norvegicus)
Aerobic respiration and respiratory electron transport (Rattus norvegicus)
Pyruvate metabolism (Rattus norvegicus)
LDH tetramer oxidises LACT to PYR (Rattus norvegicus)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Rattus norvegicus)
NAD+ [cytosol]
Respiratory electron transport (Rattus norvegicus)
Malate-aspartate shuttle (Rattus norvegicus)
MDH1 reduces OA (Rattus norvegicus)
NAD+ [cytosol]
Biological oxidations (Rattus norvegicus)
Phase I - Functionalization of compounds (Rattus norvegicus)
Ethanol oxidation (Rattus norvegicus)
ADH5 oxidises S-HMGSH to S-FGSH (Rattus norvegicus)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Rattus norvegicus)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Rattus norvegicus)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Rattus norvegicus)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Rattus norvegicus)
Glucuronidation (Rattus norvegicus)
Formation of the active cofactor, UDP-glucuronate (Rattus norvegicus)
UDP-glucose is oxidised to UDP-glucuronate (Rattus norvegicus)
NAD+ [cytosol]
Methylation (Rattus norvegicus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Rattus norvegicus)
AHCY:NAD+ tetramer [cytosol] (Rattus norvegicus)
AHCY:NAD+ [cytosol] (Rattus norvegicus)
NAD+ [cytosol]
Inositol phosphate metabolism (Rattus norvegicus)
Synthesis of IP2, IP, and Ins in the cytosol (Rattus norvegicus)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Rattus norvegicus)
ISYNA1:NAD+ [cytosol] (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Rattus norvegicus)
Carnitine synthesis (Rattus norvegicus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Rattus norvegicus)
NAD+ [cytosol]
Histidine catabolism (Rattus norvegicus)
urocanate + H2O => 4-imidazolone-5-propionate (Rattus norvegicus)
UROC1:NAD+ [cytosol] (Rattus norvegicus)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Rattus norvegicus)
Phenylalanine metabolism (Rattus norvegicus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Rattus norvegicus)
NAD+ [cytosol]
Serine biosynthesis (Rattus norvegicus)
PHGDH tetramer dehydrogenates 3PG (Rattus norvegicus)
NAD+ [cytosol]
Sulfur amino acid metabolism (Rattus norvegicus)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Rattus norvegicus)
AHCY:NAD+ tetramer [cytosol] (Rattus norvegicus)
AHCY:NAD+ [cytosol] (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of carbohydrates (Rattus norvegicus)
Formation of xylulose-5-phosphate (Rattus norvegicus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Rattus norvegicus)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Rattus norvegicus)
NAD+ [cytosol]
Fructose metabolism (Rattus norvegicus)
Fructose biosynthesis (Rattus norvegicus)
SORD oxidizes D-sorbitol to Fru (Rattus norvegicus)
NAD+ [cytosol]
Fructose catabolism (Rattus norvegicus)
ALDH1A1 oxidises GA to DGA (Rattus norvegicus)
NAD+ [cytosol]
Galactose catabolism (Rattus norvegicus)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Rattus norvegicus)
GALE:NAD+ dimer [cytosol] (Rattus norvegicus)
NAD+ [cytosol]
Glucose metabolism (Rattus norvegicus)
Gluconeogenesis (Rattus norvegicus)
GAPDH tetramers reduce 1,3BPG to GA3P (Rattus norvegicus)
NAD+ [cytosol]
Glycolysis (Rattus norvegicus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of lipids (Rattus norvegicus)
Biosynthesis of specialized proresolving mediators (SPMs) (Rattus norvegicus)
Biosynthesis of DHA-derived SPMs (Rattus norvegicus)
Biosynthesis of D-series resolvins (Rattus norvegicus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Rattus norvegicus)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Rattus norvegicus)
Biosynthesis of E-series 18(S)-resolvins (Rattus norvegicus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Rattus norvegicus)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Rattus norvegicus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Rattus norvegicus)
NAD+ [cytosol]
Ketone body metabolism (Rattus norvegicus)
Synthesis of Ketone Bodies (Rattus norvegicus)
BDH2 dehydrogenates 3HBA (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of steroids (Rattus norvegicus)
Bile acid and bile salt metabolism (Rattus norvegicus)
Synthesis of bile acids and bile salts (Rattus norvegicus)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Rattus norvegicus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Rattus norvegicus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Rattus norvegicus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Rattus norvegicus)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Rattus norvegicus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Rattus norvegicus)
NAD+ [cytosol]
Cholesterol biosynthesis (Rattus norvegicus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Rattus norvegicus)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of steroid hormones (Rattus norvegicus)
Androgen biosynthesis (Rattus norvegicus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Rattus norvegicus)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Rattus norvegicus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Rattus norvegicus)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Rattus norvegicus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Rattus norvegicus)
NAD+ [cytosol]
Phospholipid metabolism (Rattus norvegicus)
Glycerophospholipid biosynthesis (Rattus norvegicus)
Synthesis of PA (Rattus norvegicus)
DHAP is converted to G3P by GPD1/GPD1L (Rattus norvegicus)
NAD+ [cytosol]
Sphingolipid metabolism (Rattus norvegicus)
Sphingolipid catabolism (Rattus norvegicus)
ALDH3A2-1 oxidises HD2NAL to PALM (Rattus norvegicus)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Rattus norvegicus)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of nucleotides (Rattus norvegicus)
Nucleotide biosynthesis (Rattus norvegicus)
Purine ribonucleoside monophosphate biosynthesis (Rattus norvegicus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Rattus norvegicus)
NAD+ [cytosol]
Nucleotide catabolism (Rattus norvegicus)
Purine catabolism (Rattus norvegicus)
XDH dehydrogenates hypoxanthine to form xanthine (Rattus norvegicus)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Rattus norvegicus)
Metabolism of water-soluble vitamins and cofactors (Rattus norvegicus)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Rattus norvegicus)
Cobalamin (Cbl) metabolism (Rattus norvegicus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Rattus norvegicus)
NAD+ [cytosol]
Nicotinate metabolism (Rattus norvegicus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Rattus norvegicus)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Rattus norvegicus)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Rattus norvegicus)
NAD+ [cytosol]
Nicotinamide salvaging (Rattus norvegicus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Rattus norvegicus)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Rattus norvegicus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Rattus norvegicus)
NAD+ [cytosol]
Metabolism of proteins (Rattus norvegicus)
Post-translational protein modification (Rattus norvegicus)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Rattus norvegicus)
Hypusine synthesis from eIF5A-lysine (Rattus norvegicus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Rattus norvegicus)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Rattus norvegicus)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Rattus norvegicus)
NAD+ [cytosol]
Signal Transduction (Rattus norvegicus)
Intracellular signaling by second messengers (Rattus norvegicus)
PIP3 activates AKT signaling (Rattus norvegicus)
PTEN Regulation (Rattus norvegicus)
Regulation of PTEN stability and activity (Rattus norvegicus)
TNKS and TNKS2 PARylate PTEN (Rattus norvegicus)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Rattus norvegicus)
Signaling by Retinoic Acid (Rattus norvegicus)
RA biosynthesis pathway (Rattus norvegicus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Rattus norvegicus)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Rattus norvegicus)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Rattus norvegicus)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Rattus norvegicus)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Rattus norvegicus)
NAD+ [cytosol]
Signaling by WNT (Rattus norvegicus)
TCF dependent signaling in response to WNT (Rattus norvegicus)
Degradation of AXIN (Rattus norvegicus)
Tankyrase ADP-ribosylates AXIN (Rattus norvegicus)
NAD+ [cytosol]
Transport of small molecules (Rattus norvegicus)
O2/CO2 exchange in erythrocytes (Rattus norvegicus)
Erythrocytes take up carbon dioxide and release oxygen (Rattus norvegicus)
CYB5Rs reduce MetHb to HbA (Rattus norvegicus)
NAD+ [cytosol]
Drug ADME (Saccharomyces cerevisiae)
Abacavir ADME (Saccharomyces cerevisiae)
Abacavir metabolism (Saccharomyces cerevisiae)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
Azathioprine ADME (Saccharomyces cerevisiae)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism (Saccharomyces cerevisiae)
Biological oxidations (Saccharomyces cerevisiae)
Phase I - Functionalization of compounds (Saccharomyces cerevisiae)
Ethanol oxidation (Saccharomyces cerevisiae)
ADH5 oxidises S-HMGSH to S-FGSH (Saccharomyces cerevisiae)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Saccharomyces cerevisiae)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Saccharomyces cerevisiae)
Methylation (Saccharomyces cerevisiae)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Saccharomyces cerevisiae)
AHCY:NAD+ tetramer [cytosol] (Saccharomyces cerevisiae)
AHCY:NAD+ [cytosol] (Saccharomyces cerevisiae)
NAD+ [cytosol]
Inositol phosphate metabolism (Saccharomyces cerevisiae)
Synthesis of IP2, IP, and Ins in the cytosol (Saccharomyces cerevisiae)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Saccharomyces cerevisiae)
ISYNA1:NAD+ [cytosol] (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Saccharomyces cerevisiae)
Sulfur amino acid metabolism (Saccharomyces cerevisiae)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Saccharomyces cerevisiae)
AHCY:NAD+ tetramer [cytosol] (Saccharomyces cerevisiae)
AHCY:NAD+ [cytosol] (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of carbohydrates (Saccharomyces cerevisiae)
Formation of xylulose-5-phosphate (Saccharomyces cerevisiae)
SORD tetramer oxidizes xylitol to D-xylulose (Saccharomyces cerevisiae)
NAD+ [cytosol]
Fructose metabolism (Saccharomyces cerevisiae)
Fructose biosynthesis (Saccharomyces cerevisiae)
SORD oxidizes D-sorbitol to Fru (Saccharomyces cerevisiae)
NAD+ [cytosol]
Fructose catabolism (Saccharomyces cerevisiae)
ALDH1A1 oxidises GA to DGA (Saccharomyces cerevisiae)
NAD+ [cytosol]
Galactose catabolism (Saccharomyces cerevisiae)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Saccharomyces cerevisiae)
GALE:NAD+ dimer [cytosol] (Saccharomyces cerevisiae)
NAD+ [cytosol]
Glucose metabolism (Saccharomyces cerevisiae)
Gluconeogenesis (Saccharomyces cerevisiae)
GAPDH tetramers reduce 1,3BPG to GA3P (Saccharomyces cerevisiae)
NAD+ [cytosol]
Glycolysis (Saccharomyces cerevisiae)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of lipids (Saccharomyces cerevisiae)
Metabolism of steroids (Saccharomyces cerevisiae)
Cholesterol biosynthesis (Saccharomyces cerevisiae)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Saccharomyces cerevisiae)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Saccharomyces cerevisiae)
NAD+ [cytosol]
Phospholipid metabolism (Saccharomyces cerevisiae)
Glycerophospholipid biosynthesis (Saccharomyces cerevisiae)
Synthesis of PA (Saccharomyces cerevisiae)
DHAP is converted to G3P by GPD1/GPD1L (Saccharomyces cerevisiae)
NAD+ [cytosol]
Sphingolipid metabolism (Saccharomyces cerevisiae)
Sphingolipid catabolism (Saccharomyces cerevisiae)
ALDH3A2-1 oxidises HD2NAL to PALM (Saccharomyces cerevisiae)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Saccharomyces cerevisiae)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of nucleotides (Saccharomyces cerevisiae)
Nucleotide biosynthesis (Saccharomyces cerevisiae)
Purine ribonucleoside monophosphate biosynthesis (Saccharomyces cerevisiae)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Saccharomyces cerevisiae)
Metabolism of water-soluble vitamins and cofactors (Saccharomyces cerevisiae)
Nicotinate metabolism (Saccharomyces cerevisiae)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Saccharomyces cerevisiae)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Saccharomyces cerevisiae)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Saccharomyces cerevisiae)
NAD+ [cytosol]
Metabolism of proteins (Saccharomyces cerevisiae)
Post-translational protein modification (Saccharomyces cerevisiae)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Saccharomyces cerevisiae)
Hypusine synthesis from eIF5A-lysine (Saccharomyces cerevisiae)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Saccharomyces cerevisiae)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Saccharomyces cerevisiae)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Saccharomyces cerevisiae)
NAD+ [cytosol]
Signal Transduction (Saccharomyces cerevisiae)
Signaling by Nuclear Receptors (Saccharomyces cerevisiae)
Signaling by Retinoic Acid (Saccharomyces cerevisiae)
RA biosynthesis pathway (Saccharomyces cerevisiae)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Saccharomyces cerevisiae)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Saccharomyces cerevisiae)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Saccharomyces cerevisiae)
NAD+ [cytosol]
Drug ADME (Schizosaccharomyces pombe)
Abacavir ADME (Schizosaccharomyces pombe)
Abacavir metabolism (Schizosaccharomyces pombe)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
Azathioprine ADME (Schizosaccharomyces pombe)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism (Schizosaccharomyces pombe)
Biological oxidations (Schizosaccharomyces pombe)
Phase I - Functionalization of compounds (Schizosaccharomyces pombe)
Ethanol oxidation (Schizosaccharomyces pombe)
ADH5 oxidises S-HMGSH to S-FGSH (Schizosaccharomyces pombe)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Schizosaccharomyces pombe)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Schizosaccharomyces pombe)
Methylation (Schizosaccharomyces pombe)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Schizosaccharomyces pombe)
AHCY:NAD+ tetramer [cytosol] (Schizosaccharomyces pombe)
AHCY:NAD+ [cytosol] (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Schizosaccharomyces pombe)
Sulfur amino acid metabolism (Schizosaccharomyces pombe)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Schizosaccharomyces pombe)
AHCY:NAD+ tetramer [cytosol] (Schizosaccharomyces pombe)
AHCY:NAD+ [cytosol] (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of carbohydrates (Schizosaccharomyces pombe)
Formation of xylulose-5-phosphate (Schizosaccharomyces pombe)
SORD tetramer oxidizes xylitol to D-xylulose (Schizosaccharomyces pombe)
NAD+ [cytosol]
Fructose metabolism (Schizosaccharomyces pombe)
Fructose biosynthesis (Schizosaccharomyces pombe)
SORD oxidizes D-sorbitol to Fru (Schizosaccharomyces pombe)
NAD+ [cytosol]
Fructose catabolism (Schizosaccharomyces pombe)
ALDH1A1 oxidises GA to DGA (Schizosaccharomyces pombe)
NAD+ [cytosol]
Galactose catabolism (Schizosaccharomyces pombe)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Schizosaccharomyces pombe)
GALE:NAD+ dimer [cytosol] (Schizosaccharomyces pombe)
NAD+ [cytosol]
Glucose metabolism (Schizosaccharomyces pombe)
Gluconeogenesis (Schizosaccharomyces pombe)
GAPDH tetramers reduce 1,3BPG to GA3P (Schizosaccharomyces pombe)
NAD+ [cytosol]
Glycolysis (Schizosaccharomyces pombe)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of lipids (Schizosaccharomyces pombe)
Metabolism of steroids (Schizosaccharomyces pombe)
Cholesterol biosynthesis (Schizosaccharomyces pombe)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Schizosaccharomyces pombe)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Schizosaccharomyces pombe)
NAD+ [cytosol]
Phospholipid metabolism (Schizosaccharomyces pombe)
Glycerophospholipid biosynthesis (Schizosaccharomyces pombe)
Synthesis of PA (Schizosaccharomyces pombe)
DHAP is converted to G3P by GPD1/GPD1L (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of nucleotides (Schizosaccharomyces pombe)
Nucleotide biosynthesis (Schizosaccharomyces pombe)
Purine ribonucleoside monophosphate biosynthesis (Schizosaccharomyces pombe)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Schizosaccharomyces pombe)
Metabolism of water-soluble vitamins and cofactors (Schizosaccharomyces pombe)
Nicotinate metabolism (Schizosaccharomyces pombe)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Schizosaccharomyces pombe)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Schizosaccharomyces pombe)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Schizosaccharomyces pombe)
NAD+ [cytosol]
Metabolism of proteins (Schizosaccharomyces pombe)
Post-translational protein modification (Schizosaccharomyces pombe)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Schizosaccharomyces pombe)
Hypusine synthesis from eIF5A-lysine (Schizosaccharomyces pombe)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Schizosaccharomyces pombe)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Schizosaccharomyces pombe)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Schizosaccharomyces pombe)
NAD+ [cytosol]
Signal Transduction (Schizosaccharomyces pombe)
Signaling by Nuclear Receptors (Schizosaccharomyces pombe)
Signaling by Retinoic Acid (Schizosaccharomyces pombe)
RA biosynthesis pathway (Schizosaccharomyces pombe)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Schizosaccharomyces pombe)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Schizosaccharomyces pombe)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Schizosaccharomyces pombe)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Schizosaccharomyces pombe)
NAD+ [cytosol]
Cell Cycle (Sus scrofa)
Cell Cycle, Mitotic (Sus scrofa)
M Phase (Sus scrofa)
Mitotic Metaphase and Anaphase (Sus scrofa)
Mitotic Anaphase (Sus scrofa)
Nuclear Envelope (NE) Reassembly (Sus scrofa)
Initiation of Nuclear Envelope (NE) Reformation (Sus scrofa)
ANKLE2 is deacetylated by SIRT2 (Sus scrofa)
NAD+ [cytosol]
Drug ADME (Sus scrofa)
Abacavir ADME (Sus scrofa)
Abacavir metabolism (Sus scrofa)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Sus scrofa)
NAD+ [cytosol]
Azathioprine ADME (Sus scrofa)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Sus scrofa)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Sus scrofa)
NAD+ [cytosol]
Metabolism (Sus scrofa)
Aerobic respiration and respiratory electron transport (Sus scrofa)
Pyruvate metabolism (Sus scrofa)
LDH tetramer oxidises LACT to PYR (Sus scrofa)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Sus scrofa)
NAD+ [cytosol]
Respiratory electron transport (Sus scrofa)
Malate-aspartate shuttle (Sus scrofa)
MDH1 reduces OA (Sus scrofa)
NAD+ [cytosol]
Biological oxidations (Sus scrofa)
Phase I - Functionalization of compounds (Sus scrofa)
Ethanol oxidation (Sus scrofa)
ADH5 oxidises S-HMGSH to S-FGSH (Sus scrofa)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Sus scrofa)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Sus scrofa)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Sus scrofa)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Sus scrofa)
Glucuronidation (Sus scrofa)
Formation of the active cofactor, UDP-glucuronate (Sus scrofa)
UDP-glucose is oxidised to UDP-glucuronate (Sus scrofa)
NAD+ [cytosol]
Methylation (Sus scrofa)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Sus scrofa)
AHCY:NAD+ tetramer [cytosol] (Sus scrofa)
AHCY:NAD+ [cytosol] (Sus scrofa)
NAD+ [cytosol]
Inositol phosphate metabolism (Sus scrofa)
Synthesis of IP2, IP, and Ins in the cytosol (Sus scrofa)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Sus scrofa)
ISYNA1:NAD+ [cytosol] (Sus scrofa)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Sus scrofa)
Carnitine synthesis (Sus scrofa)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Sus scrofa)
NAD+ [cytosol]
Histidine catabolism (Sus scrofa)
urocanate + H2O => 4-imidazolone-5-propionate (Sus scrofa)
UROC1:NAD+ [cytosol] (Sus scrofa)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Sus scrofa)
Phenylalanine metabolism (Sus scrofa)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Sus scrofa)
NAD+ [cytosol]
Serine biosynthesis (Sus scrofa)
PHGDH tetramer dehydrogenates 3PG (Sus scrofa)
NAD+ [cytosol]
Sulfur amino acid metabolism (Sus scrofa)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Sus scrofa)
AHCY:NAD+ tetramer [cytosol] (Sus scrofa)
AHCY:NAD+ [cytosol] (Sus scrofa)
NAD+ [cytosol]
Metabolism of carbohydrates (Sus scrofa)
Formation of xylulose-5-phosphate (Sus scrofa)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Sus scrofa)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Sus scrofa)
NAD+ [cytosol]
Fructose metabolism (Sus scrofa)
Fructose biosynthesis (Sus scrofa)
SORD oxidizes D-sorbitol to Fru (Sus scrofa)
NAD+ [cytosol]
Fructose catabolism (Sus scrofa)
ALDH1A1 oxidises GA to DGA (Sus scrofa)
NAD+ [cytosol]
Galactose catabolism (Sus scrofa)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Sus scrofa)
GALE:NAD+ dimer [cytosol] (Sus scrofa)
NAD+ [cytosol]
Glucose metabolism (Sus scrofa)
Gluconeogenesis (Sus scrofa)
GAPDH tetramers reduce 1,3BPG to GA3P (Sus scrofa)
NAD+ [cytosol]
Glycolysis (Sus scrofa)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Sus scrofa)
NAD+ [cytosol]
Metabolism of lipids (Sus scrofa)
Biosynthesis of specialized proresolving mediators (SPMs) (Sus scrofa)
Biosynthesis of DHA-derived SPMs (Sus scrofa)
Biosynthesis of D-series resolvins (Sus scrofa)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Sus scrofa)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Sus scrofa)
Biosynthesis of E-series 18(S)-resolvins (Sus scrofa)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Sus scrofa)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Sus scrofa)
LXA4 is oxidised to 15k-LXA4 by HPGD (Sus scrofa)
NAD+ [cytosol]
Ketone body metabolism (Sus scrofa)
Synthesis of Ketone Bodies (Sus scrofa)
BDH2 dehydrogenates 3HBA (Sus scrofa)
NAD+ [cytosol]
Metabolism of steroids (Sus scrofa)
Bile acid and bile salt metabolism (Sus scrofa)
Synthesis of bile acids and bile salts (Sus scrofa)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Sus scrofa)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Sus scrofa)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Sus scrofa)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Sus scrofa)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Sus scrofa)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Sus scrofa)
NAD+ [cytosol]
Cholesterol biosynthesis (Sus scrofa)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Sus scrofa)
NAD+ [cytosol]
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Sus scrofa)
NAD+ [cytosol]
Metabolism of steroid hormones (Sus scrofa)
Androgen biosynthesis (Sus scrofa)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Sus scrofa)
NAD+ [cytosol]
Glucocorticoid biosynthesis (Sus scrofa)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Sus scrofa)
NAD+ [cytosol]
Mineralocorticoid biosynthesis (Sus scrofa)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Sus scrofa)
NAD+ [cytosol]
Phospholipid metabolism (Sus scrofa)
Glycerophospholipid biosynthesis (Sus scrofa)
Synthesis of PA (Sus scrofa)
DHAP is converted to G3P by GPD1/GPD1L (Sus scrofa)
NAD+ [cytosol]
Sphingolipid metabolism (Sus scrofa)
Sphingolipid catabolism (Sus scrofa)
ALDH3A2-1 oxidises HD2NAL to PALM (Sus scrofa)
NAD+ [cytosol]
ALDH3B1 oxidises HXAL to PALM (Sus scrofa)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Sus scrofa)
NAD+ [cytosol]
Metabolism of nucleotides (Sus scrofa)
Nucleotide biosynthesis (Sus scrofa)
Purine ribonucleoside monophosphate biosynthesis (Sus scrofa)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Sus scrofa)
NAD+ [cytosol]
Nucleotide catabolism (Sus scrofa)
Purine catabolism (Sus scrofa)
XDH dehydrogenates hypoxanthine to form xanthine (Sus scrofa)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Sus scrofa)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Sus scrofa)
Metabolism of water-soluble vitamins and cofactors (Sus scrofa)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Sus scrofa)
Cobalamin (Cbl) metabolism (Sus scrofa)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Sus scrofa)
NAD+ [cytosol]
Nicotinate metabolism (Sus scrofa)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Sus scrofa)
NAD+ [cytosol]
NADSYN1 hexamer amidates NAAD to NAD+ (Sus scrofa)
NAD+ [cytosol]
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Sus scrofa)
NAD+ [cytosol]
Nicotinamide salvaging (Sus scrofa)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Sus scrofa)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Sus scrofa)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Sus scrofa)
NAD+ [cytosol]
Metabolism of proteins (Sus scrofa)
Post-translational protein modification (Sus scrofa)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Sus scrofa)
Hypusine synthesis from eIF5A-lysine (Sus scrofa)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Sus scrofa)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Sus scrofa)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Sus scrofa)
NAD+ [cytosol]
Sensory Perception (Sus scrofa)
Visual phototransduction (Sus scrofa)
The canonical retinoid cycle in rods (twilight vision) (Sus scrofa)
RDH5 oxidises 11cROL to 11cRAL (Sus scrofa)
NAD+ [cytosol]
Signal Transduction (Sus scrofa)
Intracellular signaling by second messengers (Sus scrofa)
PIP3 activates AKT signaling (Sus scrofa)
PTEN Regulation (Sus scrofa)
Regulation of PTEN stability and activity (Sus scrofa)
TNKS and TNKS2 PARylate PTEN (Sus scrofa)
NAD+ [cytosol]
Signaling by Nuclear Receptors (Sus scrofa)
Signaling by Retinoic Acid (Sus scrofa)
RA biosynthesis pathway (Sus scrofa)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Sus scrofa)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Sus scrofa)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Sus scrofa)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Sus scrofa)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Sus scrofa)
NAD+ [cytosol]
Signaling by WNT (Sus scrofa)
TCF dependent signaling in response to WNT (Sus scrofa)
Degradation of AXIN (Sus scrofa)
Tankyrase ADP-ribosylates AXIN (Sus scrofa)
NAD+ [cytosol]
Transport of small molecules (Sus scrofa)
O2/CO2 exchange in erythrocytes (Sus scrofa)
Erythrocytes take up carbon dioxide and release oxygen (Sus scrofa)
CYB5Rs reduce MetHb to HbA (Sus scrofa)
NAD+ [cytosol]
Drug ADME (Xenopus tropicalis)
Abacavir ADME (Xenopus tropicalis)
Abacavir metabolism (Xenopus tropicalis)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Xenopus tropicalis)
NAD+ [cytosol]
Azathioprine ADME (Xenopus tropicalis)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Xenopus tropicalis)
NAD+ [cytosol]
XDH oxidises 6MP to 6TU (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism (Xenopus tropicalis)
Aerobic respiration and respiratory electron transport (Xenopus tropicalis)
Pyruvate metabolism (Xenopus tropicalis)
LDH tetramer oxidises LACT to PYR (Xenopus tropicalis)
NAD+ [cytosol]
LDH tetramer reduces PYR to LACT (Xenopus tropicalis)
NAD+ [cytosol]
Respiratory electron transport (Xenopus tropicalis)
Malate-aspartate shuttle (Xenopus tropicalis)
MDH1 reduces OA (Xenopus tropicalis)
NAD+ [cytosol]
Biological oxidations (Xenopus tropicalis)
Phase I - Functionalization of compounds (Xenopus tropicalis)
Ethanol oxidation (Xenopus tropicalis)
ADH5 oxidises S-HMGSH to S-FGSH (Xenopus tropicalis)
NAD+ [cytosol]
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Xenopus tropicalis)
NAD+ [cytosol]
ethanol + NAD+ => acetaldehyde + NADH + H+ (Xenopus tropicalis)
NAD+ [cytosol]
MARC1,MARC2 reduce N-hydroxylated compounds (Xenopus tropicalis)
NAD+ [cytosol]
Phase II - Conjugation of compounds (Xenopus tropicalis)
Glucuronidation (Xenopus tropicalis)
Formation of the active cofactor, UDP-glucuronate (Xenopus tropicalis)
UDP-glucose is oxidised to UDP-glucuronate (Xenopus tropicalis)
NAD+ [cytosol]
Methylation (Xenopus tropicalis)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Xenopus tropicalis)
AHCY:NAD+ tetramer [cytosol] (Xenopus tropicalis)
AHCY:NAD+ [cytosol] (Xenopus tropicalis)
NAD+ [cytosol]
Inositol phosphate metabolism (Xenopus tropicalis)
Synthesis of IP2, IP, and Ins in the cytosol (Xenopus tropicalis)
Glc6P is isomerised to I3P by ISYNA1 in the cytosol (Xenopus tropicalis)
ISYNA1:NAD+ [cytosol] (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of amino acids and derivatives (Xenopus tropicalis)
Carnitine synthesis (Xenopus tropicalis)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Xenopus tropicalis)
NAD+ [cytosol]
Histidine catabolism (Xenopus tropicalis)
urocanate + H2O => 4-imidazolone-5-propionate (Xenopus tropicalis)
UROC1:NAD+ [cytosol] (Xenopus tropicalis)
NAD+ [cytosol]
Phenylalanine and tyrosine metabolism (Xenopus tropicalis)
Phenylalanine metabolism (Xenopus tropicalis)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Xenopus tropicalis)
NAD+ [cytosol]
Serine biosynthesis (Xenopus tropicalis)
PHGDH tetramer dehydrogenates 3PG (Xenopus tropicalis)
NAD+ [cytosol]
Sulfur amino acid metabolism (Xenopus tropicalis)
AHCY:NAD+ tetramer hydrolyses AdoHcy (Xenopus tropicalis)
AHCY:NAD+ tetramer [cytosol] (Xenopus tropicalis)
AHCY:NAD+ [cytosol] (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of carbohydrates (Xenopus tropicalis)
Formation of xylulose-5-phosphate (Xenopus tropicalis)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Xenopus tropicalis)
NAD+ [cytosol]
SORD tetramer oxidizes xylitol to D-xylulose (Xenopus tropicalis)
NAD+ [cytosol]
Fructose metabolism (Xenopus tropicalis)
Fructose biosynthesis (Xenopus tropicalis)
SORD oxidizes D-sorbitol to Fru (Xenopus tropicalis)
NAD+ [cytosol]
Fructose catabolism (Xenopus tropicalis)
ALDH1A1 oxidises GA to DGA (Xenopus tropicalis)
NAD+ [cytosol]
Galactose catabolism (Xenopus tropicalis)
GALE:NAD+ dimer reversibly epimerises UDP-Gal to UDP-Glc (Xenopus tropicalis)
GALE:NAD+ dimer [cytosol] (Xenopus tropicalis)
NAD+ [cytosol]
Glucose metabolism (Xenopus tropicalis)
Gluconeogenesis (Xenopus tropicalis)
GAPDH tetramers reduce 1,3BPG to GA3P (Xenopus tropicalis)
NAD+ [cytosol]
Glycolysis (Xenopus tropicalis)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of lipids (Xenopus tropicalis)
Biosynthesis of specialized proresolving mediators (SPMs) (Xenopus tropicalis)
Biosynthesis of DHA-derived SPMs (Xenopus tropicalis)
Biosynthesis of D-series resolvins (Xenopus tropicalis)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Xenopus tropicalis)
NAD+ [cytosol]
Biosynthesis of EPA-derived SPMs (Xenopus tropicalis)
Biosynthesis of E-series 18(S)-resolvins (Xenopus tropicalis)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Xenopus tropicalis)
NAD+ [cytosol]
Biosynthesis of Lipoxins (LX) (Xenopus tropicalis)
LXA4 is oxidised to 15k-LXA4 by HPGD (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of steroids (Xenopus tropicalis)
Bile acid and bile salt metabolism (Xenopus tropicalis)
Synthesis of bile acids and bile salts (Xenopus tropicalis)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol (Xenopus tropicalis)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Xenopus tropicalis)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 27-hydroxycholesterol (Xenopus tropicalis)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Xenopus tropicalis)
NAD+ [cytosol]
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol (Xenopus tropicalis)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Xenopus tropicalis)
NAD+ [cytosol]
Phospholipid metabolism (Xenopus tropicalis)
Glycerophospholipid biosynthesis (Xenopus tropicalis)
Synthesis of PA (Xenopus tropicalis)
DHAP is converted to G3P by GPD1/GPD1L (Xenopus tropicalis)
NAD+ [cytosol]
Sphingolipid metabolism (Xenopus tropicalis)
Sphingolipid catabolism (Xenopus tropicalis)
ALDH3B1 oxidises HXAL to PALM (Xenopus tropicalis)
NAD+ [cytosol]
ALDH3B2 oxidises HXAL to PALM (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of nucleotides (Xenopus tropicalis)
Nucleotide biosynthesis (Xenopus tropicalis)
Purine ribonucleoside monophosphate biosynthesis (Xenopus tropicalis)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Xenopus tropicalis)
NAD+ [cytosol]
Nucleotide catabolism (Xenopus tropicalis)
Purine catabolism (Xenopus tropicalis)
XDH dehydrogenates hypoxanthine to form xanthine (Xenopus tropicalis)
NAD+ [cytosol]
XDH dehydrogenates xanthine to form urate (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of vitamins and cofactors (Xenopus tropicalis)
Metabolism of water-soluble vitamins and cofactors (Xenopus tropicalis)
Cobalamin (Cbl, vitamin B12) transport and metabolism (Xenopus tropicalis)
Cobalamin (Cbl) metabolism (Xenopus tropicalis)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Xenopus tropicalis)
NAD+ [cytosol]
Nicotinate metabolism (Xenopus tropicalis)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Xenopus tropicalis)
NAD+ [cytosol]
Nicotinamide salvaging (Xenopus tropicalis)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Xenopus tropicalis)
NAD+ [cytosol]
Vitamin C (ascorbate) metabolism (Xenopus tropicalis)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Xenopus tropicalis)
NAD+ [cytosol]
Metabolism of proteins (Xenopus tropicalis)
Post-translational protein modification (Xenopus tropicalis)
Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation (Xenopus tropicalis)
Hypusine synthesis from eIF5A-lysine (Xenopus tropicalis)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Xenopus tropicalis)
NAD+ [cytosol]
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Xenopus tropicalis)
NAD+ [cytosol]
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Xenopus tropicalis)
NAD+ [cytosol]
Sensory Perception (Xenopus tropicalis)
Visual phototransduction (Xenopus tropicalis)
The canonical retinoid cycle in rods (twilight vision) (Xenopus tropicalis)
RDH5 oxidises 11cROL to 11cRAL (Xenopus tropicalis)
NAD+ [cytosol]
Signal Transduction (Xenopus tropicalis)
Signaling by Nuclear Receptors (Xenopus tropicalis)
Signaling by Retinoic Acid (Xenopus tropicalis)
RA biosynthesis pathway (Xenopus tropicalis)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Xenopus tropicalis)
NAD+ [cytosol]
ALDH8A1 oxidises 9cRAL to 9cRA (Xenopus tropicalis)
NAD+ [cytosol]
ALDHs oxidise atRAL to atRA (Xenopus tropicalis)
NAD+ [cytosol]
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Xenopus tropicalis)
NAD+ [cytosol]
RDH5,RDH11 oxidise 11cROL to 11cRAL (Xenopus tropicalis)
NAD+ [cytosol]
Transport of small molecules (Xenopus tropicalis)
O2/CO2 exchange in erythrocytes (Xenopus tropicalis)
Erythrocytes take up carbon dioxide and release oxygen (Xenopus tropicalis)
CYB5Rs reduce MetHb to HbA (Xenopus tropicalis)
NAD+ [cytosol]
External Reference Information
External Reference
NAD(1-) [ChEBI:57540]
Participates
as a component of
ISYNA1:NAD+ [cytosol] (Sus scrofa)
ISYNA1:NAD+ [cytosol] (Bos taurus)
ISYNA1:NAD+ [cytosol] (Gallus gallus)
ISYNA1:NAD+ [cytosol] (Rattus norvegicus)
ISYNA1:NAD+ [cytosol] (Dictyostelium discoideum)
ISYNA1:NAD+ [cytosol] (Caenorhabditis elegans)
ISYNA1:NAD+ [cytosol] (Mus musculus)
ISYNA1:NAD+ [cytosol] (Plasmodium falciparum)
ISYNA1:NAD+ [cytosol] (Saccharomyces cerevisiae)
ISYNA1:NAD+ [cytosol] (Xenopus tropicalis)
ISYNA1:NAD+ [cytosol] (Drosophila melanogaster)
ISYNA1:NAD+ [cytosol] (Homo sapiens)
GALE V94M:GALE V94M:NAD+:NAD+ [cytosol] (Homo sapiens)
AHCY mutants:NAD+ [cytosol] (Homo sapiens)
UROC1:NAD+ [cytosol] (Dictyostelium discoideum)
UROC1:NAD+ [cytosol] (Canis familiaris)
UROC1:NAD+ [cytosol] (Caenorhabditis elegans)
UROC1:NAD+ [cytosol] (Bos taurus)
UROC1:NAD+ [cytosol] (Mus musculus)
UROC1:NAD+ [cytosol] (Gallus gallus)
UROC1:NAD+ [cytosol] (Xenopus tropicalis)
UROC1:NAD+ [cytosol] (Rattus norvegicus)
UROC1:NAD+ [cytosol] (Danio rerio)
UROC1:NAD+ [cytosol] (Homo sapiens)
UROC1:NAD+ [cytosol] (Sus scrofa)
AHCY:NAD+ [cytosol] (Caenorhabditis elegans)
AHCY:NAD+ [cytosol] (Bos taurus)
AHCY:NAD+ [cytosol] (Gallus gallus)
AHCY:NAD+ [cytosol] (Danio rerio)
AHCY:NAD+ [cytosol] (Rattus norvegicus)
AHCY:NAD+ [cytosol] (Mus musculus)
AHCY:NAD+ [cytosol] (Saccharomyces cerevisiae)
AHCY:NAD+ [cytosol] (Xenopus tropicalis)
AHCY:NAD+ [cytosol] (Schizosaccharomyces pombe)
AHCY:NAD+ [cytosol] (Drosophila melanogaster)
AHCY:NAD+ [cytosol] (Dictyostelium discoideum)
AHCY:NAD+ [cytosol] (Canis familiaris)
AHCY:NAD+ [cytosol] (Sus scrofa)
AHCY:NAD+ [cytosol] (Homo sapiens)
GALE:NAD+ dimer [cytosol] (Gallus gallus)
GALE:NAD+ dimer [cytosol] (Mus musculus)
GALE:NAD+ dimer [cytosol] (Rattus norvegicus)
GALE:NAD+ dimer [cytosol] (Danio rerio)
GALE:NAD+ dimer [cytosol] (Drosophila melanogaster)
GALE:NAD+ dimer [cytosol] (Canis familiaris)
GALE:NAD+ dimer [cytosol] (Bos taurus)
GALE:NAD+ dimer [cytosol] (Sus scrofa)
GALE:NAD+ dimer [cytosol] (Dictyostelium discoideum)
GALE:NAD+ dimer [cytosol] (Saccharomyces cerevisiae)
GALE:NAD+ dimer [cytosol] (Schizosaccharomyces pombe)
GALE:NAD+ dimer [cytosol] (Caenorhabditis elegans)
GALE:NAD+ dimer [cytosol] (Xenopus tropicalis)
GALE:NAD+ dimer [cytosol] (Homo sapiens)
as an input of
hypoxanthine + H2O + NAD+ => xanthine + NADH + H+ (Gallus gallus)
xanthine + H2O + NAD+ => urate + NADH + H+ (Gallus gallus)
inosine 5'-monophosphate (IMP) + NAD+ + H2O => xanthosine 5'-monophosphate (XMP) + NADH + H+ (Gallus gallus)
lactate + NAD+ <=> pyruvate + NADH + H+ (Gallus gallus)
glyceraldehyde 3-phosphate + NAD+ + phosphate <=> 1,3-bisphosphoglycerate + NADH + H+ (Gallus gallus)
malate + NAD+ <=> oxaloacetate + NADH + H+ (Gallus gallus)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Schizosaccharomyces pombe)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Caenorhabditis elegans)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Drosophila melanogaster)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Gallus gallus)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Xenopus tropicalis)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Danio rerio)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Sus scrofa)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Bos taurus)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Canis familiaris)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Rattus norvegicus)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Mus musculus)
RDH5,RDH11 oxidise 11cROL to 11cRAL (Homo sapiens)
mycothiol binds formaldehyde and is dehydrogenated (Mycobacterium tuberculosis)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Drosophila melanogaster)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Gallus gallus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Xenopus tropicalis)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Danio rerio)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Sus scrofa)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Bos taurus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Canis familiaris)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Rattus norvegicus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Mus musculus)
HPGD dimer oxidises 18(S)-RvE1 to 18-oxo-RvE1 (Homo sapiens)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Drosophila melanogaster)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Gallus gallus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Xenopus tropicalis)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Danio rerio)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Sus scrofa)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Bos taurus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Canis familiaris)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Rattus norvegicus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Mus musculus)
HPGD dimer oxidises RvD1 to 17(S)-oxo-RvD1 and 8-oxo-17(S)-RvD1 (Homo sapiens)
LXA4 is oxidised to 15k-LXA4 by HPGD (Drosophila melanogaster)
LXA4 is oxidised to 15k-LXA4 by HPGD (Gallus gallus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Xenopus tropicalis)
LXA4 is oxidised to 15k-LXA4 by HPGD (Danio rerio)
LXA4 is oxidised to 15k-LXA4 by HPGD (Sus scrofa)
LXA4 is oxidised to 15k-LXA4 by HPGD (Bos taurus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Canis familiaris)
LXA4 is oxidised to 15k-LXA4 by HPGD (Rattus norvegicus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Mus musculus)
LXA4 is oxidised to 15k-LXA4 by HPGD (Homo sapiens)
BDH2 dehydrogenates 3HBA (Gallus gallus)
BDH2 dehydrogenates 3HBA (Danio rerio)
BDH2 dehydrogenates 3HBA (Sus scrofa)
BDH2 dehydrogenates 3HBA (Bos taurus)
BDH2 dehydrogenates 3HBA (Canis familiaris)
BDH2 dehydrogenates 3HBA (Rattus norvegicus)
BDH2 dehydrogenates 3HBA (Mus musculus)
BDH2 dehydrogenates 3HBA (Homo sapiens)
XDH oxidises 6MP to 6TU (Dictyostelium discoideum)
XDH oxidises 6MP to 6TU (Caenorhabditis elegans)
XDH oxidises 6MP to 6TU (Drosophila melanogaster)
XDH oxidises 6MP to 6TU (Gallus gallus)
XDH oxidises 6MP to 6TU (Xenopus tropicalis)
XDH oxidises 6MP to 6TU (Sus scrofa)
XDH oxidises 6MP to 6TU (Bos taurus)
XDH oxidises 6MP to 6TU (Canis familiaris)
XDH oxidises 6MP to 6TU (Rattus norvegicus)
XDH oxidises 6MP to 6TU (Mus musculus)
XDH oxidises 6MP to 6TU (Homo sapiens)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Plasmodium falciparum)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Saccharomyces cerevisiae)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Schizosaccharomyces pombe)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Dictyostelium discoideum)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Caenorhabditis elegans)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Drosophila melanogaster)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Gallus gallus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Xenopus tropicalis)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Danio rerio)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Sus scrofa)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Bos taurus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Canis familiaris)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Rattus norvegicus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Mus musculus)
IMPDH tetramers dehydrogenate 6TIMP to 6TXMP (Homo sapiens)
PGD2/E2/F2a is oxidised to 15k-PGD2/E2/F2a by HPGD (Oryctolagus cuniculus)
PGD2/E2/F2a is oxidised to 15k-PGD2/E2/F2a by HPGD (Homo sapiens)
Defective RDH5 does not oxidise 11cROL to 11cRAL and causes RPA (Homo sapiens)
Retsat reduces atROL to at-13,14-dhROL (Mus musculus)
RETSAT reduces atROL to at-13,14-dhROL (Homo sapiens)
ALDH8A1 oxidises 9cRAL to 9cRA (Dictyostelium discoideum)
ALDH8A1 oxidises 9cRAL to 9cRA (Caenorhabditis elegans)
ALDH8A1 oxidises 9cRAL to 9cRA (Gallus gallus)
ALDH8A1 oxidises 9cRAL to 9cRA (Xenopus tropicalis)
ALDH8A1 oxidises 9cRAL to 9cRA (Danio rerio)
ALDH8A1 oxidises 9cRAL to 9cRA (Sus scrofa)
ALDH8A1 oxidises 9cRAL to 9cRA (Bos taurus)
ALDH8A1 oxidises 9cRAL to 9cRA (Canis familiaris)
ALDH8A1 oxidises 9cRAL to 9cRA (Rattus norvegicus)
ALDH8A1 oxidises 9cRAL to 9cRA (Mus musculus)
ALDH8A1 oxidises 9cRAL to 9cRA (Homo sapiens)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Xenopus tropicalis)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Danio rerio)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Sus scrofa)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Bos taurus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Canis familiaris)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Rattus norvegicus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Mus musculus)
7alpha-hydroxycholesterol is oxidized and isomerized to 4-cholesten-7alpha-ol-3-one (Homo sapiens)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Xenopus tropicalis)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Danio rerio)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Sus scrofa)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Bos taurus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Canis familiaris)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Rattus norvegicus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Mus musculus)
Cholest-5-ene-3beta,7alpha,24(S)-triol is oxidized and isomerized to 4-cholesten-7alpha,24(S)-diol-3-one (Homo sapiens)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Xenopus tropicalis)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Danio rerio)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Sus scrofa)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Bos taurus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Canis familiaris)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Rattus norvegicus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Mus musculus)
Cholest-5-ene-3beta,7alpha,27-triol is oxidized and isomerized to 4-cholesten-7alpha,27-diol-3-one (Homo sapiens)
ADH5 oxidises S-HMGSH to S-FGSH (Saccharomyces cerevisiae)
ADH5 oxidises S-HMGSH to S-FGSH (Schizosaccharomyces pombe)
ADH5 oxidises S-HMGSH to S-FGSH (Dictyostelium discoideum)
ADH5 oxidises S-HMGSH to S-FGSH (Caenorhabditis elegans)
ADH5 oxidises S-HMGSH to S-FGSH (Drosophila melanogaster)
ADH5 oxidises S-HMGSH to S-FGSH (Gallus gallus)
ADH5 oxidises S-HMGSH to S-FGSH (Xenopus tropicalis)
ADH5 oxidises S-HMGSH to S-FGSH (Danio rerio)
ADH5 oxidises S-HMGSH to S-FGSH (Sus scrofa)
ADH5 oxidises S-HMGSH to S-FGSH (Bos taurus)
ADH5 oxidises S-HMGSH to S-FGSH (Canis familiaris)
ADH5 oxidises S-HMGSH to S-FGSH (Rattus norvegicus)
ADH5 oxidises S-HMGSH to S-FGSH (Mus musculus)
ADH5 oxidises S-HMGSH to S-FGSH (Homo sapiens)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Gallus gallus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Danio rerio)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Sus scrofa)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Bos taurus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Canis familiaris)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Rattus norvegicus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Mus musculus)
17-Hydroxypregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione-17-ol (Homo sapiens)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Saccharomyces cerevisiae)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Schizosaccharomyces pombe)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Dictyostelium discoideum)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Caenorhabditis elegans)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Drosophila melanogaster)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Gallus gallus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Xenopus tropicalis)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Danio rerio)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Sus scrofa)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Bos taurus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Canis familiaris)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Rattus norvegicus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Mus musculus)
abacavir + 2 NAD+ => abacavir 5'-carboxylate + 2 NADH + 2 H+ (Homo sapiens)
CpnT hydrolyses NAD+ (Homo sapiens)
DT fragment A ADP-ribosylates target cell EEF (Homo sapiens)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Plasmodium falciparum)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Saccharomyces cerevisiae)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Schizosaccharomyces pombe)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Dictyostelium discoideum)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Caenorhabditis elegans)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Drosophila melanogaster)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Xenopus tropicalis)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Danio rerio)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Sus scrofa)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Bos taurus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Canis familiaris)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Rattus norvegicus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Mus musculus)
DHPS tetramer synthesizes Dhp-K50-EIF5A from EIF5A and spermidine (Homo sapiens)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Gallus gallus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Danio rerio)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Sus scrofa)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Bos taurus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Canis familiaris)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Rattus norvegicus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Mus musculus)
Pregnenolone is dehydrogenated to form pregn-5-ene-3,20-dione (Homo sapiens)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Gallus gallus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Danio rerio)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Sus scrofa)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Bos taurus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Canis familiaris)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Rattus norvegicus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Mus musculus)
HSD2B1 dimer, HSD3B2 dimer isomerise DHA to ANDST (Homo sapiens)
RDH5 oxidises 11cROL to 11cRAL (Gallus gallus)
RDH5 oxidises 11cROL to 11cRAL (Xenopus tropicalis)
RDH5 oxidises 11cROL to 11cRAL (Danio rerio)
RDH5 oxidises 11cROL to 11cRAL (Sus scrofa)
RDH5 oxidises 11cROL to 11cRAL (Bos taurus)
RDH5 oxidises 11cROL to 11cRAL (Canis familiaris)
RDH5 oxidises 11cROL to 11cRAL (Mus musculus)
RDH5 oxidises 11cROL to 11cRAL (Homo sapiens)
2-aminomuconate semialdehyde + NAD+ + H2O => aminomuconate + NADH + H+ (Felis catus)
2-aminomuconate semialdehyde + NAD+ + H2O => aminomuconate + NADH + H+ (Homo sapiens)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Saccharomyces cerevisiae)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Schizosaccharomyces pombe)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Dictyostelium discoideum)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Drosophila melanogaster)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Gallus gallus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Xenopus tropicalis)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Danio rerio)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Bos taurus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Canis familiaris)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Rattus norvegicus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Mus musculus)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Homo sapiens)
NADK:Zn2+ tetramer phosphorylates NAD+ to NADP+ (Sus scrofa)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Dictyostelium discoideum)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Drosophila melanogaster)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Gallus gallus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Xenopus tropicalis)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Danio rerio)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Bos taurus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Canis familiaris)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Rattus norvegicus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Mus musculus)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Homo sapiens)
PARPs transfer ADP-D-ribose to proteins (poly(ADP-ribosyl)ation) (Sus scrofa)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Caenorhabditis elegans)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Gallus gallus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Xenopus tropicalis)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Danio rerio)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Sus scrofa)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Bos taurus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Canis familiaris)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Rattus norvegicus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Mus musculus)
ALDH9A1 tetramer dehydrogenates TEABL to form TEABT (Homo sapiens)
ALDHs oxidise atRAL to atRA (Saccharomyces cerevisiae)
ALDHs oxidise atRAL to atRA (Schizosaccharomyces pombe)
ALDHs oxidise atRAL to atRA (Dictyostelium discoideum)
ALDHs oxidise atRAL to atRA (Caenorhabditis elegans)
ALDHs oxidise atRAL to atRA (Drosophila melanogaster)
ALDHs oxidise atRAL to atRA (Gallus gallus)
ALDHs oxidise atRAL to atRA (Xenopus tropicalis)
ALDHs oxidise atRAL to atRA (Danio rerio)
ALDHs oxidise atRAL to atRA (Sus scrofa)
ALDHs oxidise atRAL to atRA (Bos taurus)
ALDHs oxidise atRAL to atRA (Canis familiaris)
ALDHs oxidise atRAL to atRA (Rattus norvegicus)
ALDHs oxidise atRAL to atRA (Mus musculus)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Saccharomyces cerevisiae)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Schizosaccharomyces pombe)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Caenorhabditis elegans)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Drosophila melanogaster)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Gallus gallus)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Xenopus tropicalis)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Danio rerio)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Sus scrofa)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Bos taurus)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Canis familiaris)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Rattus norvegicus)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Mus musculus)
RDH10,16,DHRS9,RDHE2 oxidise atROL to atRAL (Homo sapiens)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Saccharomyces cerevisiae)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Schizosaccharomyces pombe)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Dictyostelium discoideum)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Caenorhabditis elegans)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Drosophila melanogaster)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Gallus gallus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Xenopus tropicalis)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Danio rerio)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Sus scrofa)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Bos taurus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Canis familiaris)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Rattus norvegicus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Mus musculus)
ADH1A,1C,4 oxidise atROL to atRAL in vitro (Homo sapiens)
ALDHs oxidise atRAL to atRA (Homo sapiens)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Saccharomyces cerevisiae)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Schizosaccharomyces pombe)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Dictyostelium discoideum)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Caenorhabditis elegans)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Gallus gallus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Danio rerio)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Sus scrofa)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Bos taurus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Canis familiaris)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Rattus norvegicus)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Mus musculus)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Saccharomyces cerevisiae)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Schizosaccharomyces pombe)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Dictyostelium discoideum)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Caenorhabditis elegans)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Gallus gallus)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Danio rerio)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Sus scrofa)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Bos taurus)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Canis familiaris)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Rattus norvegicus)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Mus musculus)
4-methyl,4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form 4-methylcholesta-8(9),24-dien-3-one (Homo sapiens)
4-carboxycholesta-8(9),24-dien-3beta-ol is decarboxylated and oxidized to form cholesta-8(9),24-dien-3-one (zymosterone) (Homo sapiens)
ALDH1A1 oxidises GA to DGA (Saccharomyces cerevisiae)
ALDH1A1 oxidises GA to DGA (Dictyostelium discoideum)
ALDH1A1 oxidises GA to DGA (Caenorhabditis elegans)
ALDH1A1 oxidises GA to DGA (Drosophila melanogaster)
ALDH1A1 oxidises GA to DGA (Gallus gallus)
ALDH1A1 oxidises GA to DGA (Xenopus tropicalis)
ALDH1A1 oxidises GA to DGA (Sus scrofa)
ALDH1A1 oxidises GA to DGA (Bos taurus)
ALDH1A1 oxidises GA to DGA (Canis familiaris)
ALDH1A1 oxidises GA to DGA (Rattus norvegicus)
ALDH1A1 oxidises GA to DGA (Mus musculus)
ALDH1A1 oxidises GA to DGA (Homo sapiens)
ALDH1A1 oxidises GA to DGA (Schizosaccharomyces pombe)
UDP-glucose is oxidised to UDP-glucuronate (Caenorhabditis elegans)
UDP-glucose is oxidised to UDP-glucuronate (Drosophila melanogaster)
UDP-glucose is oxidised to UDP-glucuronate (Gallus gallus)
UDP-glucose is oxidised to UDP-glucuronate (Xenopus tropicalis)
UDP-glucose is oxidised to UDP-glucuronate (Danio rerio)
UDP-glucose is oxidised to UDP-glucuronate (Sus scrofa)
UDP-glucose is oxidised to UDP-glucuronate (Bos taurus)
UDP-glucose is oxidised to UDP-glucuronate (Canis familiaris)
UDP-glucose is oxidised to UDP-glucuronate (Rattus norvegicus)
UDP-glucose is oxidised to UDP-glucuronate (Mus musculus)
UDP-glucose is oxidised to UDP-glucuronate (Homo sapiens)
ALDH3B1 oxidises HXAL to PALM (Saccharomyces cerevisiae)
ALDH3B1 oxidises HXAL to PALM (Dictyostelium discoideum)
ALDH3B1 oxidises HXAL to PALM (Caenorhabditis elegans)
ALDH3B1 oxidises HXAL to PALM (Drosophila melanogaster)
ALDH3B1 oxidises HXAL to PALM (Gallus gallus)
ALDH3B1 oxidises HXAL to PALM (Xenopus tropicalis)
ALDH3B1 oxidises HXAL to PALM (Danio rerio)
ALDH3B1 oxidises HXAL to PALM (Sus scrofa)
ALDH3B1 oxidises HXAL to PALM (Bos taurus)
ALDH3B1 oxidises HXAL to PALM (Canis familiaris)
ALDH3B1 oxidises HXAL to PALM (Rattus norvegicus)
ALDH3B1 oxidises HXAL to PALM (Mus musculus)
ALDH3B1 oxidises HXAL to PALM (Homo sapiens)
ALDH3A2-1 oxidises HD2NAL to PALM (Saccharomyces cerevisiae)
ALDH3A2-1 oxidises HD2NAL to PALM (Dictyostelium discoideum)
ALDH3A2-1 oxidises HD2NAL to PALM (Caenorhabditis elegans)
ALDH3A2-1 oxidises HD2NAL to PALM (Drosophila melanogaster)
ALDH3A2-1 oxidises HD2NAL to PALM (Gallus gallus)
ALDH3A2-1 oxidises HD2NAL to PALM (Danio rerio)
ALDH3A2-1 oxidises HD2NAL to PALM (Sus scrofa)
ALDH3A2-1 oxidises HD2NAL to PALM (Bos taurus)
ALDH3A2-1 oxidises HD2NAL to PALM (Canis familiaris)
ALDH3A2-1 oxidises HD2NAL to PALM (Rattus norvegicus)
ALDH3A2-1 oxidises HD2NAL to PALM (Mus musculus)
ALDH3A2-1 oxidises HD2NAL to PALM (Homo sapiens)
ALDH3B2 oxidises HXAL to PALM (Saccharomyces cerevisiae)
ALDH3B2 oxidises HXAL to PALM (Dictyostelium discoideum)
ALDH3B2 oxidises HXAL to PALM (Caenorhabditis elegans)
ALDH3B2 oxidises HXAL to PALM (Drosophila melanogaster)
ALDH3B2 oxidises HXAL to PALM (Gallus gallus)
ALDH3B2 oxidises HXAL to PALM (Xenopus tropicalis)
ALDH3B2 oxidises HXAL to PALM (Danio rerio)
ALDH3B2 oxidises HXAL to PALM (Sus scrofa)
ALDH3B2 oxidises HXAL to PALM (Bos taurus)
ALDH3B2 oxidises HXAL to PALM (Canis familiaris)
ALDH3B2 oxidises HXAL to PALM (Rattus norvegicus)
ALDH3B2 oxidises HXAL to PALM (Mus musculus)
ALDH3B2 oxidises HXAL to PALM (Homo sapiens)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Saccharomyces cerevisiae)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Dictyostelium discoideum)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Caenorhabditis elegans)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Drosophila melanogaster)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Gallus gallus)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Xenopus tropicalis)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Sus scrofa)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Bos taurus)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Canis familiaris)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Rattus norvegicus)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Mus musculus)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Homo sapiens)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Saccharomyces cerevisiae)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Dictyostelium discoideum)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Caenorhabditis elegans)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Drosophila melanogaster)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Gallus gallus)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Xenopus tropicalis)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Danio rerio)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Sus scrofa)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Bos taurus)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Canis familiaris)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Rattus norvegicus)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Mus musculus)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Homo sapiens)
ethanol + NAD+ => acetaldehyde + NADH + H+ (Schizosaccharomyces pombe)
acetaldehyde + NAD+ => acetate + NADH + H+ [cytosolic] (Schizosaccharomyces pombe)
XDH dehydrogenates xanthine to form urate (Dictyostelium discoideum)
XDH dehydrogenates xanthine to form urate (Caenorhabditis elegans)
XDH dehydrogenates xanthine to form urate (Drosophila melanogaster)
XDH dehydrogenates xanthine to form urate (Gallus gallus)
XDH dehydrogenates xanthine to form urate (Xenopus tropicalis)
XDH dehydrogenates xanthine to form urate (Sus scrofa)
XDH dehydrogenates xanthine to form urate (Bos taurus)
XDH dehydrogenates xanthine to form urate (Canis familiaris)
XDH dehydrogenates xanthine to form urate (Rattus norvegicus)
XDH dehydrogenates xanthine to form urate (Mus musculus)
XDH dehydrogenates hypoxanthine to form xanthine (Dictyostelium discoideum)
XDH dehydrogenates hypoxanthine to form xanthine (Caenorhabditis elegans)
XDH dehydrogenates hypoxanthine to form xanthine (Drosophila melanogaster)
XDH dehydrogenates hypoxanthine to form xanthine (Gallus gallus)
XDH dehydrogenates hypoxanthine to form xanthine (Xenopus tropicalis)
XDH dehydrogenates hypoxanthine to form xanthine (Sus scrofa)
XDH dehydrogenates hypoxanthine to form xanthine (Bos taurus)
XDH dehydrogenates hypoxanthine to form xanthine (Canis familiaris)
XDH dehydrogenates hypoxanthine to form xanthine (Rattus norvegicus)
XDH dehydrogenates hypoxanthine to form xanthine (Mus musculus)
XDH dehydrogenates hypoxanthine to form xanthine (Homo sapiens)
XDH dehydrogenates xanthine to form urate (Homo sapiens)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Plasmodium falciparum)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Saccharomyces cerevisiae)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Schizosaccharomyces pombe)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Dictyostelium discoideum)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Danio rerio)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Caenorhabditis elegans)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Drosophila melanogaster)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Gallus gallus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Xenopus tropicalis)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Sus scrofa)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Bos taurus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Canis familiaris)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Rattus norvegicus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Mus musculus)
IMP + H2O + NAD+ => XMP + NADH + H+ [IMPDH1,2] (Homo sapiens)
Tankyrase ADP-ribosylates AXIN (Gallus gallus)
Tankyrase ADP-ribosylates AXIN (Sus scrofa)
Tankyrase ADP-ribosylates AXIN (Bos taurus)
Tankyrase ADP-ribosylates AXIN (Canis familiaris)
Tankyrase ADP-ribosylates AXIN (Rattus norvegicus)
Tankyrase ADP-ribosylates AXIN (Mus musculus)
Tankyrase ADP-ribosylates AXIN (Homo sapiens)
ANKLE2 is deacetylated by SIRT2 (Drosophila melanogaster)
ANKLE2 is deacetylated by SIRT2 (Gallus gallus)
ANKLE2 is deacetylated by SIRT2 (Danio rerio)
ANKLE2 is deacetylated by SIRT2 (Sus scrofa)
ANKLE2 is deacetylated by SIRT2 (Bos taurus)
ANKLE2 is deacetylated by SIRT2 (Canis familiaris)
ANKLE2 is deacetylated by SIRT2 (Rattus norvegicus)
ANKLE2 is deacetylated by SIRT2 (Mus musculus)
ANKLE2 is deacetylated by SIRT2 (Homo sapiens)
TNKS and TNKS2 PARylate PTEN (Gallus gallus)
TNKS and TNKS2 PARylate PTEN (Sus scrofa)
TNKS and TNKS2 PARylate PTEN (Bos taurus)
TNKS and TNKS2 PARylate PTEN (Canis familiaris)
TNKS and TNKS2 PARylate PTEN (Rattus norvegicus)
TNKS and TNKS2 PARylate PTEN (Mus musculus)
TNKS and TNKS2 PARylate PTEN (Homo sapiens)
Nucleoprotein is ADP-ribosylated (Homo sapiens)
Nucleoprotein is ADP-ribosylated (Homo sapiens)
LDH tetramer oxidises LACT to PYR (Caenorhabditis elegans)
LDH tetramer oxidises LACT to PYR (Drosophila melanogaster)
LDH tetramer oxidises LACT to PYR (Gallus gallus)
LDH tetramer oxidises LACT to PYR (Xenopus tropicalis)
LDH tetramer oxidises LACT to PYR (Danio rerio)
LDH tetramer oxidises LACT to PYR (Sus scrofa)
LDH tetramer oxidises LACT to PYR (Bos taurus)
LDH tetramer oxidises LACT to PYR (Canis familiaris)
LDH tetramer oxidises LACT to PYR (Rattus norvegicus)
LDH tetramer oxidises LACT to PYR (Mus musculus)
LDH tetramer oxidises LACT to PYR (Homo sapiens)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Dictyostelium discoideum)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Xenopus tropicalis)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Danio rerio)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Caenorhabditis elegans)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Gallus gallus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Sus scrofa)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Bos taurus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Canis familiaris)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Rattus norvegicus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Mus musculus)
Cob(I)alamin bound to MMACHC is oxidized to cob(II)alamin (Homo sapiens)
PHGDH tetramer dehydrogenates 3PG (Caenorhabditis elegans)
PHGDH tetramer dehydrogenates 3PG (Drosophila melanogaster)
PHGDH tetramer dehydrogenates 3PG (Xenopus tropicalis)
PHGDH tetramer dehydrogenates 3PG (Sus scrofa)
PHGDH tetramer dehydrogenates 3PG (Bos taurus)
PHGDH tetramer dehydrogenates 3PG (Canis familiaris)
PHGDH tetramer dehydrogenates 3PG (Mus musculus)
PHGDH tetramer dehydrogenates 3PG (Homo sapiens)
PHGDH tetramer dehydrogenates 3PG (Rattus norvegicus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Plasmodium falciparum)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Saccharomyces cerevisiae)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Schizosaccharomyces pombe)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Dictyostelium discoideum)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Caenorhabditis elegans)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Drosophila melanogaster)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Gallus gallus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Xenopus tropicalis)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Danio rerio)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Sus scrofa)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Bos taurus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Canis familiaris)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Rattus norvegicus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Mus musculus)
D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + NADH + H+ (Homo sapiens)
SORD oxidizes D-sorbitol to Fru (Saccharomyces cerevisiae)
SORD oxidizes D-sorbitol to Fru (Schizosaccharomyces pombe)
SORD oxidizes D-sorbitol to Fru (Caenorhabditis elegans)
SORD tetramer oxidizes xylitol to D-xylulose (Homo sapiens)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Homo sapiens)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Mus musculus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Rattus norvegicus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Canis familiaris)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Bos taurus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Sus scrofa)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Danio rerio)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Xenopus tropicalis)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Gallus gallus)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Drosophila melanogaster)
CRYL1 dimer dehydrogenates L-gulonate to 3-dehydro-L-gulonate (Caenorhabditis elegans)
SORD tetramer oxidizes xylitol to D-xylulose (Mus musculus)
SORD tetramer oxidizes xylitol to D-xylulose (Rattus norvegicus)
SORD tetramer oxidizes xylitol to D-xylulose (Canis familiaris)
SORD tetramer oxidizes xylitol to D-xylulose (Bos taurus)
SORD tetramer oxidizes xylitol to D-xylulose (Sus scrofa)
SORD tetramer oxidizes xylitol to D-xylulose (Xenopus tropicalis)
SORD tetramer oxidizes xylitol to D-xylulose (Gallus gallus)
SORD tetramer oxidizes xylitol to D-xylulose (Drosophila melanogaster)
SORD tetramer oxidizes xylitol to D-xylulose (Caenorhabditis elegans)
SORD tetramer oxidizes xylitol to D-xylulose (Schizosaccharomyces pombe)
SORD tetramer oxidizes xylitol to D-xylulose (Saccharomyces cerevisiae)
SORD oxidizes D-sorbitol to Fru (Homo sapiens)
SORD oxidizes D-sorbitol to Fru (Mus musculus)
SORD oxidizes D-sorbitol to Fru (Rattus norvegicus)
SORD oxidizes D-sorbitol to Fru (Canis familiaris)
SORD oxidizes D-sorbitol to Fru (Bos taurus)
SORD oxidizes D-sorbitol to Fru (Sus scrofa)
SORD oxidizes D-sorbitol to Fru (Xenopus tropicalis)
SORD oxidizes D-sorbitol to Fru (Gallus gallus)
SORD oxidizes D-sorbitol to Fru (Drosophila melanogaster)
as an output of
1,3-bisphosphoglycerate + NADH + H+ <=> glyceraldehyde 3-phosphate + NAD+ + phosphate (Gallus gallus)
pyruvate + NADH + H+ <=> lactate + NAD+ (Gallus gallus)
DHQ from DAHP dephosphorylation (Mycobacterium tuberculosis)
15k-LXA4 is reduced to dhk-LXA4 by PTGR1 (Sus scrofa)
15k-LXA4 is reduced to dhk-LXA4 by PTGR1 (Homo sapiens)
MARC1,MARC2 reduce N-hydroxylated compounds (Dictyostelium discoideum)
MARC1,MARC2 reduce N-hydroxylated compounds (Caenorhabditis elegans)
MARC1,MARC2 reduce N-hydroxylated compounds (Drosophila melanogaster)
MARC1,MARC2 reduce N-hydroxylated compounds (Gallus gallus)
MARC1,MARC2 reduce N-hydroxylated compounds (Xenopus tropicalis)
MARC1,MARC2 reduce N-hydroxylated compounds (Danio rerio)
MARC1,MARC2 reduce N-hydroxylated compounds (Sus scrofa)
MARC1,MARC2 reduce N-hydroxylated compounds (Bos taurus)
MARC1,MARC2 reduce N-hydroxylated compounds (Canis familiaris)
MARC1,MARC2 reduce N-hydroxylated compounds (Rattus norvegicus)
MARC1,MARC2 reduce N-hydroxylated compounds (Mus musculus)
MARC1,MARC2 reduce N-hydroxylated compounds (Homo sapiens)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Saccharomyces cerevisiae)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Schizosaccharomyces pombe)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Dictyostelium discoideum)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Drosophila melanogaster)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Gallus gallus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Xenopus tropicalis)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Danio rerio)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Sus scrofa)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Bos taurus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Canis familiaris)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Rattus norvegicus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Mus musculus)
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme (Homo sapiens)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Plasmodium falciparum)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Saccharomyces cerevisiae)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Schizosaccharomyces pombe)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Dictyostelium discoideum)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Caenorhabditis elegans)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Drosophila melanogaster)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Gallus gallus)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Xenopus tropicalis)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Danio rerio)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Sus scrofa)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Bos taurus)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Canis familiaris)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Rattus norvegicus)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Mus musculus)
DOHH:Fe2+ hydroxylates Dhp-K50-EIF5A to form Hyp-K50-EIF5A (Homo sapiens)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Plasmodium falciparum)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Saccharomyces cerevisiae)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Schizosaccharomyces pombe)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Dictyostelium discoideum)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Caenorhabditis elegans)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Drosophila melanogaster)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Xenopus tropicalis)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Danio rerio)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Sus scrofa)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Bos taurus)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Canis familiaris)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Rattus norvegicus)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Mus musculus)
DHPS tetramer synthesizes EIF5A and spermidine from Dhp-K50-EIF5A (Homo sapiens)
CYB5Rs reduce MetHb to HbA (Gallus gallus)
CYB5Rs reduce MetHb to HbA (Xenopus tropicalis)
CYB5Rs reduce MetHb to HbA (Danio rerio)
CYB5Rs reduce MetHb to HbA (Sus scrofa)
CYB5Rs reduce MetHb to HbA (Bos taurus)
CYB5Rs reduce MetHb to HbA (Canis familiaris)
CYB5Rs reduce MetHb to HbA (Rattus norvegicus)
CYB5Rs reduce MetHb to HbA (Mus musculus)
CYB5Rs reduce MetHb to HbA (Homo sapiens)
LpdC dimer reactivates DlaT (Homo sapiens)
MscR reduces nitrosomycothiol to ammonia (Homo sapiens)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Saccharomyces cerevisiae)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Schizosaccharomyces pombe)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Dictyostelium discoideum)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Caenorhabditis elegans)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Drosophila melanogaster)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Gallus gallus)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Danio rerio)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Bos taurus)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Canis familiaris)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Rattus norvegicus)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Mus musculus)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Homo sapiens)
NMNAT2 transfers an adenylyl group from ATP to NMN to yield NAD+ (Sus scrofa)
NADSYN1 hexamer amidates NAAD to NAD+ (Plasmodium falciparum)
NADSYN1 hexamer amidates NAAD to NAD+ (Saccharomyces cerevisiae)
NADSYN1 hexamer amidates NAAD to NAD+ (Schizosaccharomyces pombe)
NADSYN1 hexamer amidates NAAD to NAD+ (Dictyostelium discoideum)
NADSYN1 hexamer amidates NAAD to NAD+ (Caenorhabditis elegans)
NADSYN1 hexamer amidates NAAD to NAD+ (Drosophila melanogaster)
NADSYN1 hexamer amidates NAAD to NAD+ (Gallus gallus)
NADSYN1 hexamer amidates NAAD to NAD+ (Danio rerio)
NADSYN1 hexamer amidates NAAD to NAD+ (Bos taurus)
NADSYN1 hexamer amidates NAAD to NAD+ (Canis familiaris)
NADSYN1 hexamer amidates NAAD to NAD+ (Rattus norvegicus)
NADSYN1 hexamer amidates NAAD to NAD+ (Mus musculus)
NADSYN1 hexamer amidates NAAD to NAD+ (Homo sapiens)
NADSYN1 hexamer amidates NAAD to NAD+ (Sus scrofa)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Dictyostelium discoideum)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Caenorhabditis elegans)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Drosophila melanogaster)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Gallus gallus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Xenopus tropicalis)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Danio rerio)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Sus scrofa)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Bos taurus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Canis familiaris)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Rattus norvegicus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Mus musculus)
q-dihydrobiopterin + NADH + H+ => tetrahydrobiopterin + NAD+ (Homo sapiens)
GAPDH tetramers reduce 1,3BPG to GA3P (Plasmodium falciparum)
GAPDH tetramers reduce 1,3BPG to GA3P (Saccharomyces cerevisiae)
GAPDH tetramers reduce 1,3BPG to GA3P (Schizosaccharomyces pombe)
GAPDH tetramers reduce 1,3BPG to GA3P (Caenorhabditis elegans)
MDH1 reduces OA (Dictyostelium discoideum)
LDH tetramer reduces PYR to LACT (Caenorhabditis elegans)
LDH tetramer reduces PYR to LACT (Drosophila melanogaster)
LDH tetramer reduces PYR to LACT (Gallus gallus)
LDH tetramer reduces PYR to LACT (Xenopus tropicalis)
LDH tetramer reduces PYR to LACT (Danio rerio)
LDH tetramer reduces PYR to LACT (Sus scrofa)
LDH tetramer reduces PYR to LACT (Bos taurus)
LDH tetramer reduces PYR to LACT (Canis familiaris)
LDH tetramer reduces PYR to LACT (Rattus norvegicus)
LDH tetramer reduces PYR to LACT (Mus musculus)
LDH tetramer reduces PYR to LACT (Homo sapiens)
GAPDH tetramers reduce 1,3BPG to GA3P (Dictyostelium discoideum)
GAPDH tetramers reduce 1,3BPG to GA3P (Drosophila melanogaster)
GAPDH tetramers reduce 1,3BPG to GA3P (Gallus gallus)
GAPDH tetramers reduce 1,3BPG to GA3P (Xenopus tropicalis)
GAPDH tetramers reduce 1,3BPG to GA3P (Danio rerio)
GAPDH tetramers reduce 1,3BPG to GA3P (Sus scrofa)
GAPDH tetramers reduce 1,3BPG to GA3P (Bos taurus)
GAPDH tetramers reduce 1,3BPG to GA3P (Canis familiaris)
GAPDH tetramers reduce 1,3BPG to GA3P (Rattus norvegicus)
MDH1 reduces OA (Bos taurus)
MDH1 reduces OA (Caenorhabditis elegans)
MDH1 reduces OA (Drosophila melanogaster)
MDH1 reduces OA (Gallus gallus)
MDH1 reduces OA (Xenopus tropicalis)
MDH1 reduces OA (Danio rerio)
MDH1 reduces OA (Sus scrofa)
MDH1 reduces OA (Canis familiaris)
MDH1 reduces OA (Mus musculus)
MDH1 reduces OA (Homo sapiens)
MDH1 reduces OA (Rattus norvegicus)
GAPDH tetramers reduce 1,3BPG to GA3P (Mus musculus)
GAPDH tetramers reduce 1,3BPG to GA3P (Homo sapiens)
DHAP is converted to G3P by GPD1/GPD1L (Homo sapiens)
DHAP is converted to G3P by GPD1/GPD1L (Mus musculus)
DHAP is converted to G3P by GPD1/GPD1L (Rattus norvegicus)
DHAP is converted to G3P by GPD1/GPD1L (Canis familiaris)
DHAP is converted to G3P by GPD1/GPD1L (Bos taurus)
DHAP is converted to G3P by GPD1/GPD1L (Sus scrofa)
DHAP is converted to G3P by GPD1/GPD1L (Danio rerio)
DHAP is converted to G3P by GPD1/GPD1L (Xenopus tropicalis)
DHAP is converted to G3P by GPD1/GPD1L (Gallus gallus)
DHAP is converted to G3P by GPD1/GPD1L (Drosophila melanogaster)
DHAP is converted to G3P by GPD1/GPD1L (Caenorhabditis elegans)
DHAP is converted to G3P by GPD1/GPD1L (Schizosaccharomyces pombe)
DHAP is converted to G3P by GPD1/GPD1L (Saccharomyces cerevisiae)
DHAP is converted to G3P by GPD1/GPD1L (Plasmodium falciparum)
as a member of
NAD(P)+ [cytosol]
Other forms of this molecule
NAD+ [mitochondrial intermembrane space]
NAD+ [cytoplasm]
NAD+ [extracellular region]
NAD+ [Golgi membrane]
NAD+ [mitochondrial matrix]
NAD+ [peroxisomal matrix]
NAD+ [endoplasmic reticulum lumen]
NAD+ [nucleoplasm]
Cross References
COMPOUND
C00003
ZINC
ZINC000008214766
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text