The helicase DDX41 was shown to sense exogenous DNA in human and mouse cells (Zhang Z et al. 2011, Parvatiyar K et al. 2012). DDX41 was also reported to sense and interact with bacterial secondary messengers cyclic di-GMP or cyclic di-AMP (Parvatiyar K et al. 2012). Mutagenesis analysis with DDX41 deletion constructs revealed that the central DEAD-box domain of DDX41 mediated the binding with DNA (Zhang Z et al. 2011, Parvatiyar K et al. 2012). Knockdown of DDX41 or STING in human cells (THP-1 and PBMC cells) and mouse dendritic cells significantly reduced the cytokine production in response to pathogen-derived DNA or poly(dG:dC) (Zhang Z et al. 2011, Parvatiyar K et al. 2012). DDX41 localized together with STING in the cytoplasm when both DDX41 and STING were co-expressed in HEK293T cells (Zhang Z et al. 2011). Mouse Ddx41 was found to bind Sting and Tbk1 in both resting and poly(dA:dT)-stimulated mouse splenic myeloid dendritic cell (D2SC mDCs) (Zhang Z et al. 2011). Ddx41-Sting interaction was also observed in c-di-GMP- or c-di-AMP-treated D2SC cells (Parvatiyar K et al. 2012). Moreover, knockdown of Ddx41 or Sting inhibited phosphorylation of Tbk1, Irf3, p65 subunit of NF-kappaB and other signal transducers in DNA-stimulated mouse bone marrow-derived (BMDCs) and D2SC cells (Zhang Z et al. 2011, Parvatiyar K et al. 2012). Collectively, these data suggest that DNA triggers DDX41 downstream signaling to type I interferon in a STING-dependent manner.
The E3 ubiquitin ligase TRIM21 was reported to promote the K48-linked ubiquitination and degradation of DDX41 leading to downregulation of the type I interferon production in mouse mDC and human monocytes THP-1 (Zhang Z et al. 2013).
Yuan, B, Lu, N, Kim, T, Zhang, Z, Liu, YJ, Bao, M
Yuan, B, Weng, L, Lu, N, Zhang, Z, Liu, YJ, Bao, M
Zeng, S, Schenk, M, Parvatiyar, K, Cheng, G, Liu, YJ, Zaver, SA, Iyer, SS, Liu, ZJ, Ouyang, S, Zhang, Z, Modlin, RL, Teles, RM, Zhong, W, Jiang, Y
© 2023 Reactome