Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
Diseases of Mismatch Repair (MMR)
Stable Identifier
R-HSA-5423599
DOI
10.3180/R-HSA-5423599.1
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Disease (Homo sapiens)
Diseases of DNA repair (Homo sapiens)
Diseases of Mismatch Repair (MMR) (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
Click the image above or
here
to open this pathway in the Pathway Browser
Defects in mammalian DNA mismatch repair (MMR) genes (MLH1, PMS2, MSH2, and MSH6) are characterized by microsatellite instability and reduced fidelity during replication and repair steps. The MMR proteins interact with each other to execute steps within the mismatch repair pathway. Defective variants of these proteins are associated with nonpolyposis colorectal cancer. The MutS proteins are thought to directly contact double-stranded DNA, scanning along the genomic DNA for mismatches analogous to a "sliding clamp" until they encounter a base pair containing a mismatch. The MutS proteins interact with multiple proteins including other MLH and MutL, the later have significant amino acid identify and structural similarity to the MLH proteins, as well as RPA, EXO1, RFC, possibly HMGB1, and other less well-characterized proteins.
With respect to the mutator function, the MSH2/MutSaplha heterodimer is thought primarily to repair single-base substitutions and 1 bp insertiondeletion mutations, while MSH2/MutSbeta is thought primarily to repair 1-4 bp insertiondeletion mutations. The MLH and MutL heterodimer proteins interact with heterodimers of MutS proteins to help catalyze different functions. MLH1:MutLalpha is the primary complex that interacts with both MutS alpha and beta complex in mechanisms thought to be relevant to cancer prevention. Recent studies suggest that MLH1:MLH3 may also contributes to some of these processes as well, but in all mechanisms tested to a lesser degree than MLH1:PMS2.
Heterozygous mutations in the MLH1 gene result in hereditary nonpolyposis colorectal cancer-2 (Papadopoulos et al., 1994).
Variants of the MSH2 gene are associated with hereditary nonpolyposis colorectal cancer. Alteration of MSH2 is also involved in Muir-Torre syndrome and mismatch repair cancer syndrome (Fishel et al. 1993).
Defects in the MSH3 gene are a cause of susceptibility to endometrial cancer (Risinger et al. 1996).
Defects in the MSH6 gene are less common than MLH1 and MSH2 defects. They have been mostly observed in atypical HNPCC families and are characterized by a weaker family history of tumor development, higher age at disease onset, and low degrees of microsatellite instability (MSI) (Lucci-Cordisco et al. 2001).
Mutations in the PMS2 gene are associated with hereditary nonpolyposis colorectal cancer, Turcot syndrome, and are a cause of supratentorial primitive neuroectodermal tumors. Heterozygous truncating mutations in PMS2 play a role in a small subset of hereditary nonpolyposis colorectal carcinoma (Lynch syndrome, HNPCC-like) families. PMS2 mutations lead to microsatellite instability with carriers showing a microsatellite instability high phenotype and loss of PMS2 protein expression in all tumors (Hamilton et al. 1995, Hendriks et al. 2006).
Literature References
PubMed ID
Title
Journal
Year
16464822
Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis
Lipkin, SM
,
Chao, EC
Nucleic Acids Res.
2006
Participants
Events
Defective Mismatch Repair Associated With MLH1
(Homo sapiens)
Defective Mismatch Repair Associated With MSH2
(Homo sapiens)
Defective Mismatch Repair Associated With MSH3
(Homo sapiens)
Defective Mismatch Repair Associated With MSH6
(Homo sapiens)
Defective Mismatch Repair Associated With PMS2
(Homo sapiens)
Participates
as an event of
Diseases of DNA repair (Homo sapiens)
Disease
Name
Identifier
Synonyms
cancer
DOID:162
malignant tumor, malignant neoplasm, primary cancer
Authored
Gillespie, ME (2014-03-03)
Reviewed
Arora, S (2016-11-01)
Created
Gillespie, ME (2014-05-09)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text