Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
CLEC7A binds 1,3-beta-D-glucan
Stable Identifier
R-HSA-5607758
Type
Reaction [binding]
Species
Homo sapiens
Compartment
plasma membrane
,
extracellular region
Synonyms
Dectin-1 binds 1,3-beta-D-glucan
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Immune System (Homo sapiens)
Innate Immune System (Homo sapiens)
C-type lectin receptors (CLRs) (Homo sapiens)
CLEC7A (Dectin-1) signaling (Homo sapiens)
CLEC7A binds 1,3-beta-D-glucan (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
CLEC7A (Dectin-1) was identified as a primary receptor for beta-glucans from fungi, bacteria, and plants and specifically recognises beta 1-3 linked glucans. Human CLEC7A has eight alternatively splice products of which only two are functional for beta-glucan binding (isoforms A and B) (Willment et al. 2001). CLEC7A possesses an extracellular C-type lectin-like domain (CTLD) that is connected by a stalk region to a transmembrane domain and cytoplasmic tail, which contains an immunoreceptor tyrosine-based activation (ITAM)-like motif. Two highly conserved amino acids (222W 224H in Human; 221W, 223H in Mouse) within the CTLD which have been identified as essential for beta-glucan binding (Brown et al. 2007, Adachi et al. 2004). Through the recognition of beta-glucans, CLEC7A binds several fungal species such as Aspergillus, Candida, Coccidioides, Pencillium, Pneumocystis and Saccharimyces.
Ferwerda et al. (2009) suggest that chronic mucocutaneous candidiasis may be caused by a genetic defect of CLEC7A. The mutation of nucleotide A-->C causes a change of amino acid 238 from tyrosine to a stop codon (Tyr238*), leading to the loss of the last nine amino acids of the carbohydrate-recognition domain (CRD). This mutated form of CLEC7A is poorly expressed and does not mediate beta-glucan binding, leading to defective production of cytokines after stimulation with beta-glucans or Candida albicans (Ferwerda et al. 2009).
Participants
Input
1,3-beta-D-glucan [extracellular region]
CLEC7A [plasma membrane]
(Homo sapiens)
Output
CLEC7A:1,3-beta-D-glucan [plasma membrane]
(Homo sapiens)
Participates
as an event of
CLEC7A (Dectin-1) signaling (Homo sapiens)
Inferred From
Clec7a binds 1,3-beta-D-glucan (Mus musculus)
Authored
Garapati, P V (2014-07-14)
Reviewed
Geijtenbeek, TB (2014-09-02)
Created
Garapati, P V (2014-07-14)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text