Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
TAK1 is activated within the TAK1 complex
Stable Identifier
R-HSA-450187
Type
Reaction [omitted]
Species
Homo sapiens
Compartment
cytosol
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Immune System (Homo sapiens)
Cytokine Signaling in Immune system (Homo sapiens)
Signaling by Interleukins (Homo sapiens)
Interleukin-1 family signaling (Homo sapiens)
Interleukin-1 signaling (Homo sapiens)
TAK1 is activated within the TAK1 complex (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
The TAK1 complex consists of Transforming growth factor-beta (TGFB)-activated kinase (TAK1) and TAK1-binding protein 1 (TAB1), TAB2 and TAB3. TAK1 requires TAB1 for its kinase activity (Shibuya et al. 1996, Sakurai et al. 2000). TAB1 promotes TAK1 autophosphorylation at the kinase activation lobe, probably through an allosteric mechanism (Brown et al. 2005, Ono et al. 2001). The TAK1 complex is regulated by polyubiquitination. Binding of TAB2 and TAB3 to Lys63-linked polyubiquitin chains leads to the activation of TAK1 by an uncertain mechanism. Binding of multiple TAK1 complexes to the same polyubiquitin chain may promote oligomerization of TAK1, facilitating TAK1 autophosphorylation and subsequent activation of its kinase activity (Kishimoto et al. 2000). The binding of TAB2/3 to polyubiquitinated TRAF6 may facilitate polyubiquitination of TAB2/3 by TRAF6 (Ishitani et al. 2003), which might result in conformational changes within the TAK1 complex that lead to TAK1 activation. Another possibility is that TAB2/3 may recruit the IKK complex by binding to ubiquitinated NEMO; polyubiquitin chains may function as a scaffold for higher order signaling complexes that allow interaction between TAK1 and IKK (Kanayama et al. 2004).
Literature References
PubMed ID
Title
Journal
Year
10702308
TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop
Kishimoto, K
,
Ninomiya-Tsuji, J
,
Matsumoto, K
J Biol Chem
2000
Participants
Input
hp-IRAK1:K6-poly-Ub oligo-TRAF6:TAK1 complex [cytosol]
(Homo sapiens)
Output
hp-IRAK1:K63polyUboligo-TRAF6:Activated TAK1 complex [cytosol]
(Homo sapiens)
Participates
as an event of
Interleukin-1 signaling (Homo sapiens)
Orthologous Events
TAK1 is activated within the TAK1 complex (Bos taurus)
TAK1 is activated within the TAK1 complex (Canis familiaris)
TAK1 is activated within the TAK1 complex (Mus musculus)
TAK1 is activated within the TAK1 complex (Rattus norvegicus)
TAK1 is activated within the TAK1 complex (Sus scrofa)
Authored
Ray, KP (2010-05-17)
Reviewed
Pinteaux, E (2010-05-17)
Created
Jupe, S (2009-12-16)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text