Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
Assembly and release of respiratory syncytial virus (RSV) virions
Stable Identifier
R-HSA-9820962
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Disease (Homo sapiens)
Infectious disease (Homo sapiens)
Viral Infection Pathways (Homo sapiens)
Respiratory Syncytial Virus Infection Pathway (Homo sapiens)
Assembly and release of respiratory syncytial virus (RSV) virions (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this pathway in the Pathway Browser
A mature virion of the respiratory syncytial virus (RSV) consists of the ribonucleoprotein complex (RNP) surrounded by the protein matrix and a lipid bilayer envelope. The RNP is composed of the genomic negative sense single-stranded (-ssRNA) that is tightly associated with the N protein (nucleoprotein) and the RNA-dependent RNA polymerase complex (RdRP). The RdRP consists of the L protein subunit (large polymerase subunit), the P protein subunit (phosphoprotein polymerase cofactor), and the M2-1 protein, which acts as a transcription processivity factor. The matrix consists of the M (matrix) protein. The M2-1 protein serves as the bridge between the RNP and the M protein. The matrix supports the viral envelope. The viral envelope contains three embedded viral proteins: fusion protein (F), attachment protein (G), and a small hydrophobic protein (SH). The M protein associates with the cytoplasmic domain of the F protein. The SH protein forms a pentameric ion channel in the viral envelope and is thought to delay apoptosis of infected cells. The assembly and budding of RSV virions primarily occurs at the apical surface of ciliated airway epithelial cells where viral filaments containing RNPs form. The budding of RSV virions requires interactions between viral proteins, host cytoskeletal proteins, and membrane. For review, please refer to Shaikh and Crowe 2013, and Battles and McLellan 2019.
Based on the findings that P, M, and F proteins are sufficient for formation of viral‑like particles (VLPs), P protein, particularly its highly phosphorylated serine/threonine‑rich region between amino acids 39 and 57 that likely interacts with M and/or F proteins, may play an important role in the assembly (Meshram and Oomens 2019).
Literature References
PubMed ID
Title
Journal
Year
23252497
Molecular mechanisms driving respiratory syncytial virus assembly
Crowe, JE
,
Shaikh, FY
Future Microbiol
2013
31009855
Identification of a human respiratory syncytial virus phosphoprotein domain required for virus-like-particle formation
Oomens, AGP
,
Meshram, CD
Virology
2019
30723301
Respiratory syncytial virus entry and how to block it
Battles, MB
,
McLellan, JS
Nat Rev Microbiol
2019
Participants
Events
N protein coats hRSV genomic (-)ssRNA
(Homo sapiens)
Packaging of RdRP complex with replicated hRSV A nucleocapsid
(Homo sapiens)
Formation of hRSV A matrix lattice
(Homo sapiens)
Budding of hRSV A virions from infected cell
(Homo sapiens)
Participates
as an event of
Respiratory Syncytial Virus Infection Pathway (Homo sapiens)
Event Information
Go Biological Process
response to virus (0009615)
Disease
Name
Identifier
Synonyms
respiratory syncytial virus infectious disease
DOID:1273
Authored
Orlic-Milacic, M (2022-11-22)
Reviewed
Bergeron, HC (2023-11-03)
Created
Orlic-Milacic, M (2022-11-22)
© 2024
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text