Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
MECP2 binds DGCR8
Stable Identifier
R-HSA-9022315
Type
Reaction [binding]
Species
Homo sapiens
Compartment
nucleoplasm
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Gene expression (Transcription) (Homo sapiens)
RNA Polymerase II Transcription (Homo sapiens)
Generic Transcription Pathway (Homo sapiens)
Transcriptional Regulation by MECP2 (Homo sapiens)
MECP2 binds DGCR8 (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
Based on studies in mice, MECP2, phosphorylated at serine residue S80, binds to DGCR8. The interaction involves the C-terminus of MECP2 and the RNA binding domain-containing C-terminus of DGCR8. Binding to MECP2 may interfere with the interaction between DGCR8 and DROSHA, as well as DGCR8 and primary microRNAs. As DGCR8 and DROSHA form the microprocessor complex which cleaves primary microRNAs (pri-miRNAs) into pre-miRNAs, binding of MECP2 to DGCR8 results in decreased pri-miRNA processing. One of the miRNAs affected by the interaction between MECP2 and DGCR8 is miR-134. miR-134 is highly expressed in brain where it inhibits translation of CREB1, LIMK1 and Pumilio2 mRNAs (Cheng et al. 2014). In addition to DGCR8, MECP2 was reported to bind to other components of the DROSHA microprocessor complex, including DROSHA. Instead of preventing formation of the microprocessor complex, MECP2 was reported to modulate its activity, targeting the complex to specific microRNAs. One of the microRNAs whose processing into a mature product is enhanced in the presence of MECP2 is miR-199a. Expression of several proteins that inhibit mTOR signaling is negatively regulated by miR-199a, creating a mechanistic link between MECP2 loss-of-function and decreased mTOR signaling in Rett syndrome (Tsujimura et al. 2015).
Participants
Input
DGCR8 [nucleoplasm]
(Homo sapiens)
p-S80-MECP2 [nucleoplasm]
(Homo sapiens)
Output
MECP2:DGCR8 [nucleoplasm]
(Homo sapiens)
Participates
as an event of
Transcriptional Regulation by MECP2 (Homo sapiens)
Event Information
Go Biological Process
negative regulation of primary miRNA processing (2000635)
Inferred From
Mecp2 binds Dgcr8 (Mus musculus)
Authored
Orlic-Milacic, M (2017-10-02)
Reviewed
Krishnaraj, R (2018-08-07)
Christodoulou, J (2018-08-07)
Created
Orlic-Milacic, M (2017-09-22)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text