CL-LK binds carbohydrates on target cell surface

Stable Identifier
Reaction [binding]
Homo sapiens
Locations in the PathwayBrowser
SVG |   | PPTX  | SBGN
Click the image above or here to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout

Collectin kidney 1 (CL-K1, CL-11, COLEC11) (Keshi et al. 2006) forms disulfide-bridged stable heteromers with collectin liver 1 (CL-L1, COLEC10) (Otahani et al. 1999), with a ratio of one COLEC10 to two COLEC11 polypeptide chains. The majority of plasma COLEC11 was found in complex with COLEC10 (Henriksen et al. 2013). The resulting COLEC10:2xCOLEC11 heterocomplex, termred CL-LK, contains multiple Ca2+ -dependent carbohydrate-recognition domains (CRDs) and collagen-like regions, which allow high-avidity binding (KD ~10-9 M) to target cell surface carbohydrate patterns (Bajic et al. 2015); COLEC11 recognizes L-fucose and D-mannose and the disaccharide D-mannose(alpha1-2)-D-mannose (Keshi et al. 2006, Hansen et al. 2010, Selman & Hansen 2012, ). CL-LK can bind mannose-rich patterns on M. tuberculosis (Troegeler et al. 2015). The CL-LK complex was able to bind mannan-binding lectin-associated serine proteases (MASPs) in vitro with affinities in the nM range, and was associated with MASP1/3 and MASP2 in plasma. Upon binding to mannan or DNA in the presence of MASP2, the COLEC10:COLEC11 complex mediated deposition of C4b (Henriksen et al. 2013). Polymorphisms in the COLEC11 gene cause 3MC syndrome (Rooryck et al. 2011).

Literature References
PubMed ID Title Journal Year
26173080 Collectin CL-LK Is a Novel Soluble Pattern Recognition Receptor for Mycobacterium tuberculosis

Rasolofo, V, Nigou, J, Hansen, S, Mercier, I, Duval, C, Troegeler, A, Mori, K, Lugo-Villarino, G, Hudrisier, D, Ohtani, K, BĂ©nard, A, Neyrolles, O, Wakamiya, N, Henriksen, ML

PLoS ONE 2015
Orthologous Events
Cite Us!