Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
Defective AVP does not bind AVPR1A,B and causes neurohypophyseal diabetes insipidus (NDI)
Stable Identifier
R-HSA-5619099
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Disease (Homo sapiens)
Disorders of transmembrane transporters (Homo sapiens)
SLC transporter disorders (Homo sapiens)
Defective AVP does not bind AVPR1A,B and causes neurohypophyseal diabetes insipidus (NDI) (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this pathway in the Pathway Browser
Arginine vasopressin (AVP(20-28)) is a 9 amino-acid long signal peptide produced by cleavage of the precursor protein AVP in the hypothalamus. It mediates the reabsorption of water in the kidney and its synthesis and release are physiologically regulated by plasma osmolarity, blood pressure and/or blood volume. AVP(20-28) binds to vasopressin receptors AVPR1 and 2, located on the basolateral surface of the kidney collecting duct. This binding results in interaction of AVPRs with the G protein alpha-s. Following a cascade of downstream events, ultimately the water channel aquaporin 2 (AQP2) translocates from intracellular stores to the apical surface where it functions as the entry site for water reabsorption. When water balance is achieved, plasma levels of AVP(20-28) drop and AQP2 levels in the apical plasma membrane are decreased.
Mutations in AVP make it unavailable to its AVPRs in the kidney, resulting in dysregulation of water reabsorption. This can cause familial neurohypophyseal diabetes insipidus (FNDI), an autosomal dominant disorder characterised by persistent excessive thirst resulting in constant drinking (polydipsia) and passage of large volumes of urine (polyuria). In FNDI, the production and release of AVP from the posterior pituitary gland is impaired (Moeller et al. 2013).
Literature References
PubMed ID
Title
Journal
Year
23360744
Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment
Fenton, RA
,
Moeller, HB
,
Rittig, S
Endocr. Rev.
2013
Participants
Events
Defective AVP mutants do not bind AVPR1A,B
(Homo sapiens)
Participates
as an event of
SLC transporter disorders (Homo sapiens)
Disease
Name
Identifier
Synonyms
neurohypophyseal diabetes insipidus
DOID:12388
central diabetes insipidus, Vasopressin deficiency, vasopressin defective diabetes insipidus, Pituitary diabetes insipidus
Authored
Jassal, B (2014-08-22)
Reviewed
Broer, S (2015-08-04)
Created
Jassal, B (2014-08-22)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text