Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
CaMKII binds activated NMDA receptor
Stable Identifier
R-HSA-445367
Type
Reaction [binding]
Species
Homo sapiens
Compartment
cytosol
,
plasma membrane
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Neuronal System (Homo sapiens)
Transmission across Chemical Synapses (Homo sapiens)
Neurotransmitter receptors and postsynaptic signal transmission (Homo sapiens)
Activation of NMDA receptors and postsynaptic events (Homo sapiens)
Post NMDA receptor activation events (Homo sapiens)
Long-term potentiation (Homo sapiens)
CaMKII binds activated NMDA receptor (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
CaMKII can independentl bind to NMDA receptor-associated proteins alpha-actinin-2 (ACTN2) and densin-180 (LRRC7), as well as the NMDA receptor subunit GluN2B (GRIN2B, NR2B). Any of the four CAMK2 isoforms, CAMK2A, CAMK2B, CAMK2D or CAMK2G, which associate to form homomeric or heteromeric CaMKII dodecamers, can bind to ACTN2 and GluN2B, while LRRC7 shows the highest affinity for CAMK2A (Husi et al. 2000, Robison et al. 2005). Binding of CaMKII to the NMDA receptor-associated proteins is independent of CaMKII phosphorylation (Robinson et al. 2005), but phosphorylation of CaMKII on threonine residue T286 (T287 in CAMK2B, CAMK2D and CAMK2G) is needed for binding to GluN2B (Strack and Colbran 1998, Bayer et al. 2001). Binding to activated calmodulin is needed for translocation of CaMKII from the cytosol to the postsynaptic density (PSD). In the cytosol, CaMKII dodecamers containing CAMK2A subunit bind to F-actin. Dissociation of CAMK2A from F-actin requires either autophosphorylation of CAMK2A or binding to activated calmodulin (Shen and Meyer 1999).
Autophosphorylation increases the affinity of CaMKII for calmodulin and binding of CaMKII to the NMDA receptor subunit GluN2B locks the kinase in an active state, thus prolonging CaMKII signaling (Bayer et al. 2001). Prolonged activity of CaMKII is implicated in long-term potentiation (LTP), which is involved in learning and memory (Fukunaga et al. 1992, Otmakhov et al. 2004). Switching from GluN2B- to GluN2A (GRIN2A)-containing NDMA receptors results in reduced binding of CaMKII to PSD and reduced LTP, which may contribute to reduced synaptic plasticity (Barria and Malinow 2005).
Participants
Input
Gly,D-Ser:L-Glu:GRIN1:GRIN2B NMDA receptors [plasma membrane]
(Homo sapiens)
p-T286-CaMKII dodecamer:CALM1:4xCa2+ [cytosol]
(Homo sapiens)
Output
Gly,D-Ser:L-Glu:GRIN1:GRIN2B NMDA receptors:p-T286-CaMKII dodecamer:CALM1:4xCa2+ [plasma membrane]
(Homo sapiens)
Participates
as an event of
Long-term potentiation (Homo sapiens)
Inferred From
CaMKII binds activated GluN1:GluN2B (Grin1:Grin2b) NMDA receptor (Rattus norvegicus)
Authored
Mahajan, SS (2009-10-29)
Reviewed
Tukey, D (2009-11-18)
Hansen, KB (2018-11-02)
Yi, F (2018-11-02)
Created
Mahajan, SS (2009-10-30)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text