Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
CREBBP acetylates histone H2B, H3, H4
Stable Identifier
R-HSA-3697008
Type
Reaction [transition]
Species
Homo sapiens
Compartment
nucleoplasm
ReviewStatus
5/5
Locations in the PathwayBrowser
Expand all
Chromatin organization (Homo sapiens)
Chromatin modifying enzymes (Homo sapiens)
HATs acetylate histones (Homo sapiens)
CREBBP acetylates histone H2B, H3, H4 (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
|
PPTX
|
SBGN
Click the image above or
here
to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
CREBBP (CBP) is named after its interaction with the CRE-binding protein CREB, though it interacts with many other proteins. It is thought to act as an integrator of signals from various pathways (Goodman & Smolik 2000), which compete for a limited amount of nuclear CREBBP. CREBBP and EP300 (p300) are closely related and have overlapping functions but also unique properties, particularly in vivo (Kalkhoven 2004). Both proteins form a physical bridge between DNA-binding transcription factors and the RNA polymerase II complex. Histones are believed to be the main acetylation targets of CREBBP and EP300, but their ability to acetylate and thereby regulate transcription factors such as p53 (Gu & Roeder 1997) is considered significant additional function (Kasper et al. 2006).
CREBBP has intrinsic histone acetyltransferase (HAT) activity on lysine-13 of H2B, lysine-15 of H3 and lysine-9 of H4 (Bannister & Kouzarides 1996, Rekowski & Giannis 2010, Barrett et al. 2011).
Homozygous knockout of CREBBP results in embryonic lethality (Tanaka et al. 1997). Focal deletion of CREBBP demonstrates that it is critical for the in vivo acetylation of lysines on histones H2B, H3 and H4, and cannot be compensated for by the p300 (Barrett et al. 2011).
Genomic aberrations in CREBBP are associated with Rubinstein-Taybi syndrome (Torress et al. 2013).
N.B. Coordinates of post-translational modifications described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature.
Participants
Input
Ac-CoA [nucleoplasm]
Histone H2B, H3, H4 [nucleoplasm]
(Homo sapiens)
Output
AcK-histone H2B, H3, H4 [nucleoplasm]
(Homo sapiens)
CoA-SH [nucleoplasm]
Participates
as an event of
HATs acetylate histones (Homo sapiens)
Catalyst Activity
histone acetyltransferase activity of CREBBP [nucleoplasm]
Physical Entity
CREBBP [nucleoplasm]
(Homo sapiens)
Activity
histone acetyltransferase activity (GO:0004402)
Inferred From
Crebbp acetylates replicative histone H2B, H3, H4 (Mus musculus)
Authored
Jupe, S (2013-03-12)
Reviewed
Karagiannis, T (2013-11-18)
Created
Jupe, S (2013-06-07)
© 2025
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text