HDACs deacetylate histones

Stable Identifier
R-HSA-3214815
DOI
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this pathway in the Pathway Browser
Lysine deacetylases (KDACs), historically referred to as histone deacetylases (HDACs), are divided into the Rpd3/Hda1 metal-dependent 'classical HDAC family' (de Ruijter et al. 2003, Verdin et al. 2003) and the unrelated sirtuins (Milne & Denu 2008). Phylogenetic analysis divides human KDACs into four classes (Gregoretti et al. 2004): Class I includes HDAC1, 2, 3 and 8; Class IIa includes HDAC4, 5, 7 and 9; Class IIb includes HDAC6 and 10; Class III are the sirtuins (SIRT1-7); Class IV has one member, HDAC11 (Gao et al. 2002). Class III enzymes use an NAD+ cofactor to perform deacetylation (Milne & Denu 2008, Yang & Seto 2008), the others classes use a metal-dependent mechanism (Gregoretti et al. 2004) to catalyze the hydrolysis of acetyl-L-lysine side chains in histone and non-histone proteins yielding L-lysine and acetate. X-ray crystal structures are available for four human HDACs; these structures have conserved active site residues, suggesting a common catalytic mechanism (Lombardi et al. 2011). They require a single transition metal ion and are typically studied in vitro as Zn2+-containing enzymes, though in vivo HDAC8 exhibits increased activity when substituted with Fe2+ (Gantt et al. 2006). The structurally-related enzyme acetylpolyamine amidohydrolase (APAH) (Leipe & Landsman 1997) exhibits optimal activity with Mn2+, followed closely by Zn2+ (Sakurada et al. 1996).

HDACs are often part of multi-protein transcriptional complexes that are recruited to gene promoters, regulating transcription without direct DNA binding. With the exception of HDAC8, all class I members can be catalytic subunits of multiprotein complexes (Yang & Seto 2008). HDAC1 and HDAC2 interact to form the catalytic core of several multisubunit complexes including Sin3, nucleosome remodeling deacetylase (NuRD) and corepressor of REST (CoREST) complexes (Grozinger & Schreiber 2002). HDAC3 is part of the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex or the homologous nuclear receptor corepressor (NCoR) (Li et al. 2000, Wen et al. 2000, Zhang et al. 2002, Yoon et al. 2003, Oberoi et al. 2011) which are involved in a wide range of processes including metabolism, inflammation, and circadian rhythms (Mottis et al. 2013).

Class IIa HDACs (HDAC4, -5, -7, and -9) shuttle between the nucleus and cytoplasm (Yang & Seto 2008, Haberland et al. 2009). The nuclear export of class IIa HDACs requires phosphorylation stimulated by calcium or other stimuli. They appear to have been evolutionarily inactivated as enzymes, having acquired a histidine substitution of the tyrosine residue in the active site of the mammalian deacetylase domain (H976 in humans) (Lahm et al. 2007, Schuetz et al. 2008). Instead they function as transcriptional corepressors for the MEF2 family of transcription factors (Yang & Gregoire 2005) .

Histones are the primary substrate for most HDACs except HDAC6 which is predominantly cytoplasmic and acts on alpha-tublin (Hubbert et al. 2002, Zhang et al. 2003, Boyault et al. 2007). HDACs also deacetylate proteins such as p53, E2F1, RelA, YY1, TFIIE, BCL6 and TFIIF (Glozak et al. 2005).

Histone deacetylases are targeted by structurally diverse compounds known as HDAC inhibitors (HDIs) (Marks et al. 2000). These can induce cytodifferentiation, cell cycle arrest and apoptosis of transformed cells (Marks et al. 2000, Bolden et al. 2006). Some HDIs have significant antitumor activity (Marks and Breslow 2007, Ma et al. 2009) and at least two are approved anti-cancer drugs.

The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature.
Literature References
PubMed ID Title Journal Year
12429021 Histone deacetylases (HDACs): characterization of the classical HDAC family

van Gennip, AH, Kemp, S, Caron, HN, van Kuilenburg, AB, de Ruijter, AJ

Biochem. J. 2003
21872466 Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes

Cole, KE, Dowling, DP, Christianson, DW, Lombardi, PM

Curr. Opin. Struct. Biol. 2011
Participants
Participates
Orthologous Events
Authored
Reviewed
Created
Cite Us!