Prdm9 Binds Recombination Hotspot Motifs in DNA

Bolcun-Filas, E., Cohen, PE., Holloway, JK., Lyndaker, A., May, B., Schimenti, JC., Strong, E.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

13/11/2021
Introduction

Reactome is an open-source, open-access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
Prdm9 Binds Recombination Hotspot Motifs in DNA

Stable identifier: R-MMU-912383

Type: binding

Compartments: nucleoplasm

The Prdm9 protein binds to sequences that are hotspots for recombination (Baudat et al. 2010, Myers et al. 2010). Prdm9 is homologous to methyltransferases that methylate histone H3 at lysine4 (H3K4) and has been shown to trimethylate H3K4 (Hayashi et al. 2005). In yeast and mice, H3K4 methylation marks recombination hotspots.

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Authors/Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-07-03</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-05</td>
<td>Reviewed</td>
<td>Schimenti, JC., Cohen, PE., Holloway, JK.</td>
</tr>
<tr>
<td>2011-02-25</td>
<td>Reviewed</td>
<td>Bolcun-Filas, E., Lyndaker, A., Strong, E.</td>
</tr>
</tbody>
</table>