Amyloid fiber formation

D'Eustachio, P., Jassal, B., Jupe, S., Meras-Rios, A., Perry, G.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

26/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 33 reactions (see Table of Contents)
Amyloid is a term used to describe deposits of fibrillar proteins, typically extracellular. The abnormal accumulation of amyloid, amyloidosis, is a term associated with tissue damage caused by amyloid deposition, seen in numerous diseases including neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Amyloid deposits consist predominantly of amyloid fibrils, rigid, non-branching structures that form ordered assemblies, characteristically with a cross beta-sheet structure where the sheets run parallel to the direction of the fibril (Sawaya et al. 2007). Often the fibril has a left-handed twist (Nelson & Eisenberg 2006). At least 27 human proteins form amyloid fibrils (Sipe et al. 2010). Many of these proteins have non-pathological functions; the trigger that leads to abnormal aggregations differs between proteins and is not well understood but in many cases the peptides are abnormal fragments or mutant forms arising from polymorphisms, suggesting that the initial event may be aggregation of misfolded or unfolded peptides. Early studies of Amyloid-beta assembly led to a widely accepted model that assembly was a nucleation-dependent polymerization reaction (Teplow 1998) but it is now understood to be more complex, with multiple 'off-pathway' events leading to a variety of oligomeric structures in addition to fibrils (Roychaudhuri et al. 2008), though it is unclear whether these intermediate steps are required in vivo. An increasing body of evidence suggests that these oligomeric forms are primarily responsible for the neurotoxic effects of Amyloid-beta (Roychaudhuri et al. 2008), alpha-synuclein (Winner et al. 2011) and tau (Dance & Strobel 2009, Meraz-Rios et al. 2010). Amyloid oligomers are believed to have a common structural motif that is independent of the protein involved and not present in fibrils (Kayed et al. 2003). Conformation dependent, aggregation specific antibodies suggest that there are 3 general classes of amyloid oligomer structures (Glabe 2009) including annular structures which may be responsible for the widely reported membrane permeabilization effect of amyloid oligomers. Toxicity of amyloid oligomers preceeds the appearance of plaques in mouse models (Ferretti et al. 2011).

Fibrils are often associated with other molecules, notably heparan sulfate proteoglycans and Serum
Amyloid P-component, which are universally associated and seem to stabilize fibrils, possibly by protecting them from degradation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-10-15</td>
<td>Authored</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2011-04-08</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2011-04-08</td>
<td>Reviewed</td>
<td>Perry, G.</td>
</tr>
<tr>
<td>2015-11-09</td>
<td>Reviewed</td>
<td>Perry, G.</td>
</tr>
</tbody>
</table>
SIAH1, SIAH2 bind SNCAIP

Location: Amyloid fiber formation

Stable identifier: R-HSA-5658092