Drug-mediated inhibition of MET activation

Kadambat Nair, S., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

26/03/2022
Introduction

Reactome is an open-source, open-access, manually curated, and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 2 reactions (see Table of Contents)
Drug-mediated inhibition of MET activation

Stable identifier: R-HSA-9734091

MET receptor tyrosine kinase (RTK) is a proto-oncogene that is frequently aberrantly activated in cancer through gene amplification and/or activating mutations that result in hypersensitivity to HGF stimulation or HGF-independent activation. Oncogenic MET activation can occur as a primary mechanism of malignant transformation or be selected secondarily, as a mechanism of resistance to therapeutics that target related RTKs, such as EGFR. MET targeted anti-cancer therapeutics, either recombinant monoclonal antibodies (MAbs) or small tyrosine kinase inhibitors (TKIs), have shown promise as a first-line agents for the treatment of solid tumors with primary MET activation or as second-line agents for the treatment of solid tumors with acquired MET-mediated resistance to other RTK-targeted therapies (reviewed in Comoglio et al. 2018).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-06-15</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2021-08-05</td>
<td>Reviewed</td>
<td>Kadambat Nair, S.</td>
</tr>
<tr>
<td>2021-08-10</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
Anti-MET recombinant therapeutic antibodies bind MET

Location: Drug-mediated inhibition of MET activation

Stable identifier: R-HSA-9734070