nsp12 misincorporates a nucleotide in nascent RNA minus strand

Acencio, ML., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

26/09/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 77

This document contains 1 reaction (see Table of Contents)

https://reactome.org
nsp12 misincorporates a nucleotide in nascent RNA minus strand

Stable identifier: R-HSA-9694792

Type: omitted

Compartments: cytosol, double membrane vesicle viral factory outer membrane

Diseases: COVID-19

Inferred from: nsp12 misincorporates a nucleotide in nascent RNA minus strand (Homo sapiens)

This COVID-19 event has been created by a combination of computational inference (see https://reactome.org/documentation/inferred-events) from SARS-CoV-1 data and manual curation, as described in the summation for the overall SARS-CoV-2 infection pathway.

In the presence of functional nsp14, which acts as a 3'-to-5' exonuclease, the mutation rate during human SARS coronavirus 1 (SARS-CoV-1) replication is 9×10^{-7} (9E-7) per nucleotide per replication cycle or 2.2×10^{-5} (2.2E-5) non-redundant substitutions per nucleotide, which translates into 2-3 nucleotide substitutions for each replicated SARS-CoV-1 genome. When nsp14 is defective, the mutation rate during SARS-CoV-1 replication increases to 1.2×10^{-5} (1.2E-5) mutations per nucleotide per replication cycle or 3.34×10^{-4} (3.34E-4) non-redundant substitutions per nucleotide, which translates into 12-23 nucleotide substitutions for each replicated SARS-CoV-1 genome (Eckerle et al. 2010). Here the process is annotated in two steps, nsp12-mediated misincorporation of a base (this reaction) and nsp14-mediated detection and removal of that base (next reaction).

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-08-12</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2020-08-18</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2020-09-09</td>
<td>Reviewed</td>
<td>Acencio, ML.</td>
</tr>
</tbody>
</table>