Defective RIPK1-mediated regulated necrosis

D'Eustachio, P., Lalaoui, N., Shamovsky, V.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

27/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 1 reaction (see Table of Contents)
Receptor Interacting Serine/Threonine Kinase 1 (RIPK1)-mediated regulated necrosis also called necroptosis is an important type of programmed cell death in addition to apoptosis. Necroptosis eventually leads to cell lysis and release of cytoplasmic content into the extracellular region. Necroptosis must be tightly controlled. Disregulated or defective necroptotic cell death is often associated with a tissue damage resulting in an intense inflammatory response. Defects of necroptosis may contribute to various pathological processes, including autoimmune disease, neurodegeneration, multiple cancers, and kidney injury.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-06-26</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2020-07-08</td>
<td>Authored</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2020-08-17</td>
<td>Edited</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2020-08-20</td>
<td>Reviewed</td>
<td>Lalaoui, N.</td>
</tr>
</tbody>
</table>
RIPK1 variant is not cleaved by CASP8

Location: Defective RIPK1-mediated regulated necrosis

Stable identifier: R-HSA-9693929