Potential therapeutics for SARS

Gavathiotis, E., Jassal, B., Rothfels, K., Shoichet, BK., Somers, J., Stephan, R.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

06/04/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 34 reactions (see Table of Contents)

https://reactome.org
No drug has yet (April 2020) been shown in a randomized double-blind placebo-controlled trial to prevent or reduce the severity of human infection with SARS-CoV-1 or SARS-CoV-2. Nevertheless, a large number of promising drug candidates have been identified on the basis of their efficacy in treatment of human infections with other RNA viruses or in diminishing cytokine storms and other pathologies due to destructive host reactions to viruses similar to SARS-CoV-1 and SARS-CoV-2. The interactions of these candidate drugs with their known viral and human protein targets are annotated.

In addition, some drugs that inhibit Cytochrome P450 (CYP) oxidoreductases have been shown to be effective in prolonging the plasma half-lives of antiviral drugs with acceptable side effects, and CYP inhibition by these drugs is annotated.

Finally, effects of any of these drugs on unrelated essential human proteins, that might limit their use in vivo are annotated.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Authorship Details</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-03-23</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2020-05-14</td>
<td>Reviewed</td>
<td>Shoichet, BK.</td>
</tr>
</tbody>
</table>
ACE2 is glycosylated to glycosylated-ACE2

Location: Potential therapeutics for SARS

Stable identifier: R-HSA-9683488