NR3C1 binds NR3C1 agonists

Jassal, B., Shoichet, BK.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

18/04/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 76

This document contains 1 reaction (see Table of Contents)
NR3C1 binds NR3C1 agonists

Stable identifier: R-HSA-9678925

Type: binding

Compartments: cytosol

Corticosteroids bind to the glucocorticoid receptor NR3C1 (Rupprecht et al. 1993, Lind et al. 2000), inhibiting pro-inflammatory NF-Kappa B and other inflammatory transcription factors, and promoting anti-inflammatory genes like interleukin-10. The short term effects of corticosteroids are decreased vasodilation and permeability of capillaries, as well as decreased leukocyte migration to sites of inflammation. From the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial in June 2020, dexamethasone was recommended for use in COVID-19 patients with severe respiratory symptoms. In the trial, dexamethasone reduced deaths by approximately one third in patients requiring ventilation and by one fifth in those requiring oxygen.

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-03-23</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2020-05-14</td>
<td>Reviewed</td>
<td>Shoichet, BK.</td>
</tr>
</tbody>
</table>