Diseases of cellular response to stress

Bennett, DC., D'Eustachio, P., Hayward, NK., Nathan, V., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

18/11/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 2 pathways (see Table of Contents)

https://reactome.org
Cells are subject to external and internal stressors, such as foreign molecules that perturb metabolic or signaling processes, cellular respiration-generated reactive oxygen species that can cause DNA damage, oxygen and nutrient deprivation, and changes in temperature or pH. The ability of cells and tissues to respond to stress is essential to the maintenance of tissue homeostasis (Kultz 2005) and dysregulation of cellular response to stress is involved in disease.

So far, we have captured diseases of cellular senescence.

Impaired cellular senescence contributes to malignant transformation and cancer development by enabling continuous proliferation of damaged cells. On the other hand, presence of an excessive number of senescent cells that are not cleared by the immune system promotes tissue inflammation and creates a microenvironment suitable for growth of neighboring malignant cells. In addition to cancer, senescence is also involved in other age-related diseases such as atherosclerosis, osteoarthritis, chronic obstructive lung disease, and diabetes (Childs et al. 2015, He and Sharpless 2017, Hamsanathan et al. 2019, Faget et al. 2019, Gorgoulis et al. 2019, Rhinn et al. 2019). Senotherapy is a new field of pharmacology that aims to therapeutically target senescence to improve healthy aging and age-related diseases (Schmitt 2017, Gorgoulis et al. 2019).

Literature references

https://reactome.org

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-02-21</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2020-02-24</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2020-02-24</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
Cellular senescence plays an important role in normal aging, as well as in age-related diseases. Impaired cellular senescence contributes to malignant transformation and cancer development. Presence of an excessive number of senescent cells that are not cleared by the immune system, however, promotes tissue inflammation and creates a microenvironment suitable for growth of neighboring malignant cells. Besides cancer, senescence is also involved in atherosclerosis, osteoarthritis and diabetes (Childs et al. 2015, He and Sharpless 2017).

Literature references

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Diseases of cellular response to stress</td>
<td>2</td>
</tr>
<tr>
<td>Diseases of Cellular Senescence</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
</tbody>
</table>