AAMP binds to TBXA2R

Kinsella, BT., Liu, X., Mulvaney, EP., Orlic-Milacic, M., Yao, S.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

28/12/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 83

This document contains 1 reaction (see Table of Contents)
AAMP binds to TBXA2R

Stable identifier: R-HSA-9674529

Type: binding

Compartments: cytosol, plasma membrane

AAMP (Angio-associated migratory cell protein) binds to both the TP-alpha and TP-beta isoforms which arise due to differential splicing of a primary RNA transcript encoded by the TBXA2R (thromboxane A2 receptor) gene. Their association with AAMP is dependent on common (residues 312-328) and unique (residues 366-392 of TP-beta) sequences within the variant carboxyl-terminal domains of TP-alpha and TP-beta. Stimulation of the TPs with U46619, a stable mimetic of thromboxane (TX) A2, leads to a transient dissociation of AAMP from both the TP-alpha and TP-beta isoforms, coinciding with a transient redistribution of AAMP from its localization in an intracellular fibrous network. Down-regulation of AAMP reduces coronary artery smooth muscle migration, an effect that is further enhanced in the presence of U46619, while VEGF-mediated migration is not affected. AAMP and TXA2 can independently activate RHOA signaling. (Reid et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-01-29</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2020-02-05</td>
<td>Reviewed</td>
<td>Liu, X., Yao, S.</td>
</tr>
<tr>
<td>2020-02-06</td>
<td>Reviewed</td>
<td>Kinsella, BT., Mulvaney, EP.</td>
</tr>
<tr>
<td>2020-02-10</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>