Hypochlorous acid (HOCL) oxidizes Cys residues to form Cys-sulfenyl chloride

Nüssé, O., Shamovsky, V.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 82

This document contains 1 reaction (see Table of Contents)
Hypochlorous acid (HOCl) oxidizes Cys residues to form Cys-sulfenyl chloride

Stable identifier: R-HSA-9625548

Type: transition

Compartments: phagocytic vesicle lumen

Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase (MPO), which is released from activated leukocytes. HOCl leads to chlorination of thiol-containing cysteine (Cys) residues forming Cys-sulfenyl chloride (Cys-SCl) intermediate and then Cys-sulfenic acid (Cys-SOH), which can either form a disulfide with an adjacent thiol or be further oxidized by HOCl to generate Cys-sulfinic and Cys-sulfonic acids sequentially (Peskin AV & Winterbourn CC 2001; Hawkins CL et al. 2003; Paulsen CE & Carroll KS 2013; Winterbourn CC & Kettle AJ 2013). Disulfides function as redox switches to control protein activity and protect thiol groups against overoxidation to Cys-sulfinic and -sulfonic acids.

Literature references

Kettle, AJ., Winterbourn, CC. (2013). Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal., 18, 642-60.


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Reviewer</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-10-23</td>
<td>Authored, Edited</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2018-11-07</td>
<td>Reviewed</td>
<td>Nüsse, O.</td>
</tr>
</tbody>
</table>