GluN1:GluN2 (GRIN1:GRIN2) NMDA receptors traffic to the plasma membrane

Bhattacharya, S., Camp, C., Orlic-Milacic, M., Traynelis, SF.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

20/11/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
GluN1:GluN2 (GRIN1:GRIN2) NMDA receptors traffic to the plasma membrane

Stable identifier: R-HSA-9610750

Type: uncertain

Compartments: endoplasmic reticulum membrane, plasma membrane

NMDA receptors composed of GluN1 (GRIN1) and various combinations of GluN2 (GRIN2) subunits (GluN2A, GluN2B, GluN2C and GluN2D) are all delivered to the plasma membrane where they are anchored to postsynaptic density regions via the interaction with the PSD-95 family of proteins (DLG1, DLG2, DLG3 and DLG3) (Cui et al. 2007). Details of trafficking from the endoplasmic reticulum to the plasma membrane for the majority of GluN1:GluN2 di-heteromers and tri-heteromers, except for GluN1:GluN2B NMDA receptors, are not known.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-01-05</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2019-02-11</td>
<td>Reviewed</td>
<td>Traynelis, SF., Bhattacharya, S., Camp, C.</td>
</tr>
<tr>
<td>2019-02-19</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>