O-linked glycosylation of mucins

D'Eustachio, P., Ferrer, A., Jassal, B., Kolarich, D.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

21/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 2 pathways and 12 reactions (see Table of Contents)
Mucins are a family of high molecular weight, heavily glycosylated proteins (glycoconjugates) produced by epithelial tissues in most metazoa. Mucins’ key characteristic is their ability to form gels; therefore they are a key component in most gel-like secretions, serving functions from lubrication to cell signalling to forming chemical barriers. To date, there are approximately 20 genes that express mucins. Mature mucins are composed of two distinct regions:

1. The amino- and carboxy-terminal regions are very lightly glycosylated, but rich in cysteines. The cysteine residues participate in establishing disulfide linkages within and among mucin monomers.

2. A large central region rich in serine, threonine and proline residues called the variable number of tandem repeat (VNTR) region which can become heavily O-glycosylated with hundreds of O-GalNAc glycans.

N-acetyl-galactosamine (GalNAc) is the first glycan to be attached, forming the simplest mucin O-glycan. After this, several different pathways are possible generating "core" structures. Four core structures are commonly formed, several others are possible but infrequent. O-linked glycans are often capped by the addition of a sialic acid residue, terminating the addition of any more O-glycans (Brockhausen et al, 2009; Tarp and Clausen, 2008).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author(s)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-07-19</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2011-11-04</td>
<td>Reviewed</td>
<td>Ferrer, A.</td>
</tr>
</tbody>
</table>
GALNTs transfer GalNAc to Mucins to form Tn antigens

Location: O-linked glycosylation of mucins

Stable identifier: R-HSA-913675