Interferon Signaling

Abdul-Sater, AA., Garapati, P V., Schindler, C., Zhang, DE.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 70

This document contains 4 pathways (see Table of Contents)
Interferons (IFNs) are cytokines that play a central role in initiating immune responses, especially antiviral and antitumor effects. There are three types of IFNs: Type I (IFN-alpha, -beta and others, such as omega, epsilon, and kappa), Type II (IFN-gamma) and Type III (IFN-lambda). In this module, we are mainly focusing on type I IFNs alpha and beta and type II IFN-gamma. Both type I and type II IFNs exert their actions through cognate receptor complexes, IFNAR and IFNGR respectively, present on cell surface membranes. Type I IFNs are broadly expressed heterodimeric receptors composed of the IFNAR1 and IFNAR2 subunits, while the type II IFN receptor consists of IFNGR1 and IFNGR2. Type III interferon lambda has three members: lambda1 (IL-29), lambda2 (IL-28A), and lambda3 (IL-28B) respectively. IFN-lambda signaling is initiated through unique heterodimeric receptor composed of IFN-LR1/IF-28Ralpha and IL10R2 chains.

Type I IFNs typically recruit JAK1 and TYK2 proteins to transduce their signals to STAT1 and 2; in combination with IRF9 (IFN-regulatory factor 9), these proteins form the heterotrimeric complex ISGF3. In nucleus ISGF3 binds to IFN-stimulated response elements (ISRE) to promote gene induction.

Type II IFNs in turn rely upon the activation of JAKs 1 and 2 and STAT1. Once activated, STAT1 dimerizes to form the transcriptional regulator GAF (IFNG activated factor) and this binds to the IFNG activated sequence (GAS) elements and initiate the transcription of IFNG-responsive genes.

Like type I IFNs, IFN-lambda recruits TYK2 and JAK1 kinases and then promote the phosphorylation of STAT1/2, and induce the ISRE3 complex formation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-07-07</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2010-08-17</td>
<td>Reviewed</td>
<td>Schindler, C., Abdul-Sater, AA.</td>
</tr>
</tbody>
</table>
Interferon alpha/beta signaling

Location: Interferon Signaling

Stable identifier: R-HSA-909733

Type I interferons (IFNs) are composed of various genes including IFN alpha (IFNA), beta (IFNB), omega, epsilon, and kappa. In humans the IFNA genes are composed of more than 13 subfamily genes, whereas there is only one IFNB gene. The large family of IFNA/B proteins all bind to a single receptor which is composed of two distinct chains: IFNAR1 and IFNAR2. The IFNA/B stimulation of the IFNA receptor complex leads to the formation of two transcriptional activator complexes: IFNA-activated-factor (AAF), which is a homodimer of STAT1 and IFN-stimulated gene factor 3 (ISGF3), which comprises STAT1, STAT2 and a member of the IRF family, IRF9/P48. AAF mediates activation of the IRF-1 gene by binding to GAS (IFNG-activated site), whereas ISGF3 activates several IFN-inducible genes including IRF3 and IRF7.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-07-07</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2010-08-17</td>
<td>Reviewed</td>
<td>Schindler, C., Abdul-Sater, AA.</td>
</tr>
</tbody>
</table>
Interferon gamma signaling

Location: Interferon Signaling

Stable identifier: R-HSA-877300

Interferon-gamma (IFN-gamma) belongs to the type II interferon family and is secreted by activated immune cells—primarily T and NK cells, but also B-cells and APC. INFgamma exerts its effect on cells by interacting with the specific IFN-gamma receptor (IFNGR). IFNGR consists of two chains, namely IFNGR1 (also known as the IFNGR alpha chain) and IFNGR2 (also known as the IFNGR beta chain). IFNGR1 is the ligand binding receptor and is required but not sufficient for signal transduction, whereas IFNGR2 do not bind IFNG independently but mainly plays a role in IFNG signaling and is generally the limiting factor in IFNG responsiveness. Both IFNGR chains lack intrinsic kinase/phosphatase activity and thus rely on other signaling proteins like Janus-activated kinase 1 (JAK1), JAK2 and Signal transducer and activator of transcription 1 (STAT-1) for signal transduction. IFNGR complex in its resting state is a preformed tetramer and upon IFNG association undergoes a conformational change. This conformational change induces the phosphorylation and activation of JAK1, JAK2, and STAT1 which in turn induces genes containing the gamma-interferon activation sequence (GAS) in the promoter.

Literature references

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-06-08</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2010-08-17</td>
<td>Reviewed</td>
<td>Schindler, C., Abdul-Sater, AA.</td>
</tr>
</tbody>
</table>
Interferons activate JAK–STAT signaling, which leads to the transcriptional induction of hundreds of IFN-stimulated genes (ISGs). The ISG-encoded proteins include direct effectors which inhibit viral infection through diverse mechanisms as well as factors that promote adaptive immune responses. The ISG proteins generated by IFN pathways plays key roles in the induction of innate and adaptive immune responses.

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-01-18</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Zhang, DE.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

Interferon Signaling 2

- Interferon alpha/beta signaling 4
- Interferon gamma signaling 5
- Antiviral mechanism by IFN-stimulated genes 7

Table of Contents 8