Signaling by Erythropoietin

Huddart, R., Jassal, B., Matthews, L., May, B., McGraw, KL.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

14/11/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 5 pathways and 4 reactions (see Table of Contents)
Erythropoietin (EPO) is a cytokine that serves as the primary regulator of erythropoiesis, the differentiation of erythrocytes from stem cells in the liver of the fetus and the bone marrow of adult mammals (reviewed in Ingle2012, Zhang et al. 2014, Kuhrt and Wojchowski 2015). EPO is produced in the kidneys in response to low oxygen tension and binds a receptor, EPOR, located on progenitor cells: burst forming unit-erythroid (BFU-e) cells and colony forming unit-erythroid (CFU-e) cells.

The erythropoietin receptor (EPOR) exists in lipid rafts (reviewed in McGraw and List 2017) as a dimer pre-associated with proteins involved in downstream signaling: the tyrosine kinase JAK2, the tyrosine kinase LYN, and the scaffold protein IRS2. Binding of EPO to the EPOR dimer causes a change in conformation (reviewed in Watowich et al. 2011, Corbett et al. 2016) that activates JAK2, which then transphosphorylates JAK2 and phosphorylates the cytoplasmic domain of EPOR. The phosphorylated EPOR serves directly or indirectly as a docking site for signaling molecules such as STAT5, phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), phospholipase C gamma (PLCG1, PLCG2), and activators of RAS (SHC1, GRB2:SOS1, GRB2:VAV1).

EPO activates 4 major signaling pathways: STAT5-activated transcription, PI3K-AKT, RAS-RAF-ERK, and PLC-PKC. JAK2-STAT5 activates expression of BCL2L1 (Bcl-xL) and therefore appears to be important for anti-apoptosis. PI3K-AKT appears to be important for both anti-apoptosis and proliferation. The roles of other signaling pathways are controversial but both RAS-RAF-MEK-ERK and PLCgamma-PKC have mitogenic effects. Phosphatases such as SHP1 are also recruited and downregulate the EPO signal.

EPO also has effects outside of erythropoiesis. The EPOR is expressed in various tissues such as endothelium where it can act to stimulate growth and promote cell survival (Debeljak et al. 2014, Kimákova et al. 2017). EPO and EPOR in the neurovascular system act via Akt, Wnt1, mTOR, SIRT1, and FOXO proteins to prevent apoptotic cell injury (reviewed in Ostrowski and Heinrich 2018, Maiese 2016) and EPO may have
therapeutic value in the nervous system (Ma et al. 2016).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-04-22</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
Extracellular Erythropoietin (EPO) binds the EPO receptor (EPOR) located in the plasma membrane of the target cell (Jones et al. 1990, Syed et al. 1998, Remy et al. 1999, and inferred from mouse homologs). EPOR is a dimer that appears to be preassociated with downstream signaling proteins JAK2 (inferred from mouse homologs) and LYN (Chin et al. 1998, and inferred from mouse homologs) and the scaffold protein IRS2 (Verdier et al. 1997). Binding of EPO to EPOR causes a change in the conformation of the dimer which activates JAK2 (Syed et al. 1998, Remy et al. 1999, Kubatzky et al. 2001).

Followed by: JAK2 transphosphorylates and is activated in response to Erythropoietin

Literature references

EPOR binds EPOR agonists

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9709454

Type: binding

Compartments: plasma membrane, extracellular region

Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow. EPO binds to the erythropoietin receptor (EPOR) and triggers the JAK2/STAT5 signalling cascade which ultimately signals the activation of nuclear target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x. The inhibition of apoptosis is critical in erythroid differentiation. EPO also activates other intracellular proteins involved in erythroid cell proliferation and survival.

The PEGylated functional analogue of EPO (peginesatide) and recombinant EPO forms (the epoetins) are used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy and chemotherapy (Bennet et al. 2004, Singh et al. 2006, Besarab et al. 2012, Zabaneh et al. 2015, Fishbane & Shah 2015, Zadeh 2017)

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-03-25</td>
<td>Authored</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2021-10-27</td>
<td>Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2022-03-01</td>
<td>Reviewed</td>
<td>Huddart, R.</td>
</tr>
<tr>
<td>2022-05-10</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
</tbody>
</table>
JAK2 transphosphorylates and is activated in response to Erythropoietin

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9006332

Type: transition

Compartments: plasma membrane

Inferred from: Jak2 transphosphorylates and is activated in response to Erythropoietin (Mus musculus)

Upon binding EPO, the EPOR dimer changes conformation, resulting in activation of JAK2 associated with box 1 and box 2 of the cytoplasmic domain of each EPOR (inferred from mouse homologs). One JAK2 transphosphorylates 12 tyrosine residues of the other JAK2 thereby activating JAK2 to phosphorylate EPOR and other substrates (Arcasoy et al. 1999, Watowich et al. 1999, Erickson-Miller et al. 2000, and inferred from mouse homologs).

Preceded by: EPO binds EPOR:JAK2:LYN:IRS2

Followed by: Phospho-JAK2 phosphorylates EPOR

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-04-22</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
Phospho-JAK2 phosphorylates EPOR

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9006323

Type: transition

Compartments: plasma membrane

Inferred from: Phospho-Jak2 phosphorylates Epor (Mus musculus)

Phosphorylated JAK2 phosphorylates 8 tyrosine residues in the cytoplasmic tail of EPOR (Dusanter-Fourt et al. 1992, McGraw et al. 2012, and inferred from mouse homologs). The phosphorylated residues then serve as binding sites for scaffold proteins such as CRKL and GAB1 and downstream signaling proteins such as STAT5, phospholipase C, and phosphatidylinositol 3-kinase.

Preceded by: JAK2 transphosphorylates and is activated in response to Erythropoietin

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-04-22</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
STAT5 (STAT5A or STAT5B) directly binds the phosphorylated cytoplasmic domain of EPOR, where it is phosphorylated by JAK2 and LYN (Oda et al. 1998, inferred from mouse homologs, reviewed in Kuhrt and Wojchowski 2015). Phosphorylated STAT5 then dissociates from EPOR, dimerizes, and transits to the nucleus where it activates gene expression.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-10-29</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>

https://reactome.org
Erythropoietin activates Phosphoinositide-3-kinase (PI3K)

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9027276

PI3K can bind the activated EPO receptor (EPOR) by three different mechanisms: direct binding to phospho-Y479 of the EPOR, indirect binding via phosphorylated IRS2 bound to the EPOR, and indirect binding via phosphorylated GAB1 bound to the EPOR (Bouscary et al. 2003, Schmidt et al. 2004, reviewed in Kuhrt and Wojchowski 2015). PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to yield phosphatidylinositol 3,4,5-trisphosphate which recruits AKT1 to the membrane.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-10-29</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
Erythropoietin activates RAS

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9027284

The RAS guanine nucleotide exchange factors SOS1 and VAV1 bind indirectly to the phosphorylated EPOR via CRKL, SHC1, and GRB2 (Miura et al. 1994, Hanazono et al. 1996, Odai et al. 1997, Arai et al. 2001, reviewed in Kuhrt et al. 2015). The phosphorylated cytoplasmic domain of EPOR binds CRKL, which is then phosphorylated (Arai et al. 2001). Phosphorylated CRKL binds SHC1, which is then phosphorylated and binds either GRB2:SOS1 (Barber et al. 1997) or GRB2:VAV1 (Hanazono et al. 1996). SOS1 and phosphorylated VAV1 catalyze the exchange of GDP for GTP bound to RAS, that is, RAS:GDP is converted to RAS:GTP.

Literature references

<table>
<thead>
<tr>
<th>Edition Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-10-29</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
Erythropoietin activates Phospholipase C gamma (PLCG)

Location: Signaling by Erythropoietin

Stable identifier: R-HSA-9027277

PLCG1 (Phospholipase C gamma1) or PLCG2 bound to the activated EPOR is phosphorylated on tyrosine residues by the kinase LYN (Ren et al. 1994, and inferred from mouse homologs). PLCG1 and PLCG2 produce inositol 1,4,5-trisphosphate which then activates calcium signaling, and diacylglycerol (DAG) which then activates protein kinase C (PKC).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-10-29</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-08-14</td>
<td>Reviewed</td>
<td>McGraw, KL.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

- Signaling by Erythropoietin 2
 - EPO binds EPOR:JAK2:LYN:IRS2 4
 - EPOR binds EPOR agonists 5
 - JAK2 transphosphorylates and is activated in response to Erythropoietin 6
 - Phospho-JAK2 phosphorylates EPOR 7
 - Erythropoietin activates STAT5 8
 - Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 9
 - Erythropoietin activates RAS 10
 - Erythropoietin activates Phospholipase C gamma (PLCG) 12

Table of Contents 13