Downregulation of ERBB2 signaling

Ayoub, E., D'Eustachio, P., Matthews, L., Neckers, L.M., Orlic-Milacic, M., Tremblay, M., Xu, W.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

20/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 2 pathways and 6 reactions (see Table of Contents)
Downregulation of ERBB2 signaling

Stable identifier: R-HSA-8863795

Signaling by ERBB2 can be downregulated by ubiquitination and subsequent proteasome-dependent degradation of ERBB2 or activated ERBB2 heterodimers. In addition, protein tyrosine phosphatases that dephosphorylate tyrosine residues in the C-terminus of ERBB2 prevent the recruitment of adapter proteins involved in signal transduction, thus attenuating ERBB2 signaling.

STUB1 (CHIP) and CUL5 are E3 ubiquitin ligases that can target non-activated ERBB2 for proteasome-dependent degradation (Xu et al. 2002, Ehrlich et al. 2009). RNF41 (NRDP1) is an E3 ubiquitin ligase that targets ERBB3 and activated heterodimers of ERBB2 and ERBB3 for proteasome-dependent degradation by ubiquitinating ERBB3 (Cao et al. 2007).

Two protein tyrosine phosphatases of the PEST family, PTPN12 and PTPN18, dephosphorylate tyrosine residues in the C-terminus of ERBB2, thus preventing signal transduction to RAS and PI3K effectors (Sun et al. 2011, Wang et al. 2014).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-08-11</td>
<td>Reviewed</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2016-08-12</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
CHIP (STUB1) mediates ubiquitination of ERBB2

Location: Downregulation of ERBB2 signaling

Stable identifier: R-HSA-1918092