Butyrophilin (BTN) family interactions

Garapati, P. V., Reith, W., Rhodes, D. A.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

27/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 8 reactions (see Table of Contents)
Butyrophilin (BTN) family interactions

Stable identifier: R-HSA-8851680

Butyrophilins (BTNs) and butyrophilin like (BTNL) molecules are regulators of immune responses that belong to the immunoglobulin (Ig) superfamily of transmembrane proteins. They are structurally related to the B7 family of co-stimulatory molecules and have similar immunomodulatory functions (Afrache et al. 2012, Arnett & Viney 2014). BTNs are implicated in T cell development, activation and inhibition, as well as in the modulation of the interactions of T cells with antigen presenting cells and epithelial cells. Certain BTNs are genetically associated with autoimmune and inflammatory diseases (Abeler Domer et al. 2014).

The human butyrophilin family includes seven members that are subdivided into three subfamilies: BTN1, BTN2 and BTN3. The BTN1 subfamily contains only the prototypic single copy BTN1A1 gene, whereas the BTN2 and BTN3 subfamilies each contain three genes BTN2A1, BTN2A2 and BTN2A3, and BTN3A1, BTN3A2 and BTN3A3, respectively (note that BTN2A3 is a pseudogene). BTN1A1 has a crucial function in the secretion of lipids into milk (Ogg et al. 2004) and collectively, BTN2 and BTN3 proteins are cell surface transmembrane glycoproteins, that act as regulators of immune responses. BTNL proteins share considerable homology to the BTN family members. The human genome contains four BTNL genes: BTNL2, 3, 8 and 9 (Abeler Domer et al. 2014).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-01-05</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2016-09-10</td>
<td>Reviewed</td>
<td>Reith, W.</td>
</tr>
<tr>
<td>2017-03-01</td>
<td>Reviewed</td>
<td>Rhodes, DA.</td>
</tr>
</tbody>
</table>
BTN1A1 binds xanthine oxidoreductase (XDH)

Location: Butyrophilin (BTN) family interactions

Stable identifier: R-HSA-8851044