Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 4 pathways and 9 reactions (see Table of Contents)
Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-77289

Compartments: mitochondrial matrix

Beta-oxidation begins once fatty acids have been imported into the mitochondrial matrix by carnitine acyltransferases. The beta-oxidation spiral of fatty acids metabolism involves the repetitive removal of two carbon units from the fatty acyl chain. There are four steps to this process: oxidation, hydration, a second oxidation, and finally thiolysis. The last step releases the two-carbon acetyl-CoA and a ready primed acyl-CoA that takes another turn down the spiral. In total each turn of the beta-oxidation spiral produces one NADH, one FADH2, and one acetyl-CoA.

Further oxidation of acetyl-CoA via the tricarboxylic acid cycle generates additional FADH2 and NADH. All reduced cofactors are used by the mitochondrial electron transport chain to form ATP. The complete oxidation of a fatty acid molecule produces numerous ATP molecules. Palmitate, used as the model here, produces 129 ATPs.

Beta-oxidation pathways differ for saturated and unsaturated fatty acids. The beta-oxidation of saturated fatty acids requires four different enzymatic steps. Beta-oxidation produces and consumes intermediates with a trans configuration; unsaturated fatty acids that have bonds in the cis configuration require three separate enzymatic steps to prepare these molecules for the beta-oxidation pathway.

Literature references

https://reactome.org

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-09-19</td>
<td>Authored</td>
<td>Gillespie, ME.</td>
</tr>
<tr>
<td>2022-08-23</td>
<td>Edited</td>
<td>Gillespie, ME.</td>
</tr>
</tbody>
</table>
mitochondrial fatty acid beta-oxidation of saturated fatty acids

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-77286

Compartments: mitochondrial matrix

Once fatty acids have been imported into the mitochondrial matrix by the carnitine acyltransferases, the beta-oxidation spiral begins. Each turn of this spiral concludes with the repetitive removal of two carbon units from the fatty acyl chain. beta-oxidation of saturated fatty acids (fatty acids with even numbered carbon chains and no double bonds) involves four different enzymatic steps: oxidation, hydration, a second oxidation, and a concluding thiolysis step, resulting in the two-carbon acetyl-CoA and a newly CoA primed acyl-CoA for the next turn of the spiral.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-09-19</td>
<td>Authored</td>
<td>Gillespie, ME.</td>
</tr>
<tr>
<td>2022-08-23</td>
<td>Edited</td>
<td>Gillespie, ME.</td>
</tr>
</tbody>
</table>
The complete beta-oxidation spiral produces and consumes intermediates with a trans configuration. Mitochondrial beta-oxidation of unsaturated fatty acids leads to intermediates not compatible with the four enzymatic steps responsible for the beta-oxidation of saturated fatty acids. Unsaturated fatty acids that have bonds in the cis configuration require three separate enzymatic steps to prepare these molecules for the beta-oxidation pathway. The further processing of these intermediates requires additional enzymes, depending on the position of the double bonds in the original fatty acids. Described here is the beta-oxidation of linoleoyl-CoA.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-10-25</td>
<td>Authored</td>
<td>Gillespie, ME.</td>
</tr>
<tr>
<td>2022-08-23</td>
<td>Edited</td>
<td>Gillespie, ME.</td>
</tr>
</tbody>
</table>
ACAD10 dehydrogenates S-2MPDA-CoA

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-5695980

Type: transition

Compartments: mitochondrial matrix

Acyl-CoA dehydrogenase family member 10 (ACAD10) is a mitochondrial enzyme that can catalyse the alpha, beta-dehydrogenation of acyl-CoA esters. ACAD10 shows highest expression in foetal brain and is shown to be active only on S-2-methylpentadecenoyl-CoA (S-2MPDA-CoA), a C15 acyl-CoA. The S isomer is dehydrogenated to its respective 2,3-dehydroacyl-CoA product, S-2methyl-2,3-dehydropentadecenoyl-CoA (S-2MDPDA) (He et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-26</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2015-06-26</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
ACAD11 dehydrogenates BH-CoA

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-5695989

Type: transition

Compartments: mitochondrial inner membrane, mitochondrial matrix

Acyl-CoA dehydrogenase family member 11 (ACAD11) is a mitochondrial membrane-bound enzyme that can catalyse the alpha, beta-dehydrogenation of acyl-CoA esters. ACAD11 shows highest expression in the brain and is shown to dehydrogenate the C22 acyl-CoA behenoyl-CoA (BH-CoA) to 2,3-dehydrobehenoyl-CoA (DBH-CoA) (He et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-26</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2015-06-26</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Propionyl-CoA catabolism

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-71032

Compartments: mitochondrial matrix

Propionyl-CoA is a product of the catabolism of the amino acids, leucine, methionine, and threonine, and of the beta-oxidation of fatty acids with odd numbers of carbon atoms. The three reactions of this pathway convert propionyl-CoA to succinyl-CoA, an intermediate of the citric acid cycle. Through these reactions, carbon atoms from these sources can be fully oxidized to produce energy, or can be directed to gluconeogenesis. The three reactions of propionyl-CoA catabolism take place in the mitochondrial matrix.

Literature references

Editions

2022-08-23 Edited D'Eustachio, P.
ACAA2 tetramer transfers acyl group from Ac-CoA to acyl-CoA forming 3OA-CoA and CoA-SH

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-8874745

Type: transition

Compartments: mitochondrial matrix

Mitochondrial 3-ketoacyl-CoA thiolase (ACAA2) is a mitochondrial matrix enzyme involved in fatty acid beta-oxidation, transferring the acyl group from acyl-CoA (acyl-CoA) to acetyl-CoA (Ac-CoA) to form 3-oxyoacyl-CoA (3OA-CoA) and CoA-SH (Abe et al. 1993, Middleton 1973).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-27</td>
<td>Author, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2016-07-15</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
MCAT transfers Mal from Mal-CoA to NDUFAB1

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-8933547

Type: transition

Compartments: mitochondrial inner membrane, mitochondrial matrix

The ACP (acyl carrier protein) NDUFAB1 is the cofactor protein that covalently binds all fatty acyl intermediates via a phosphopantetheine linkage during the synthesis of fatty acids. Mitochondrial malonyl-CoA-acyl carrier protein transacylase (MCAT, MT) catalyses the transfer of a malonyl moiety from malonyl-CoA (Mal-CoA) to the free thiol group of the phosphopantetheine arm of NDUFAB1, suggesting a possible role in fatty acid biosynthesis in the mitochondrion (Zhang et al. 2003).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-08-05</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2016-08-12</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>

https://reactome.org
ACSF2 ligates CoA-SH to MCFA

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-5696004

Type: transition

Compartments: mitochondrial matrix

Acyl-coenzyme A synthetases (ACSs) catalyse the activation of fatty acids by thioesterification to CoA, the fundamental initial reaction in fatty acid metabolism. Mitochondrial acyl-CoA synthetase family member 2 (ACSF2) preferentially ligates CoA-SH to medium-chain fatty acids (MCFA), around C8 in length (Watkins et al. 2007).

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Author/Editor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-26</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2015-06-26</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
ACOT2,9,THEM4,5 hydrolyse MCFA-CoA, LCFA-CoA

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-5690066

Type: transition

Compartments: mitochondrial matrix

The maintenance/regulation of cellular levels of free fatty acids and fatty acyl-CoAs (the activated form of free fatty acids) is extremely important, as imbalances in lipid metabolism can have serious consequences for human health. Acyl-coenzyme A thioesterases (ACOTs) hydrolyse the thioester bond in medium- to long-chain fatty acyl-CoAs (of C12-C18 lengths) (MCFA-CoA, LCFA-CoA) to their free fatty acids (MCFA, LCFA) (Cohen 2013, Hunt et al. 2012, Kirkby et al. 2010). ACOTs that function in the mitochondrion are ACOT2 (Hunt et al. 2006), ACOT9 (Kirkby et al. 2010), THEM4 dimer (Zhuravleva et al. 2012, Zhao et al. 2012) and THEM5 dimer (Zhuravleva et al. 2012). THEM4 is also functional in the cytosol and at the plasma membrane (Cohen 2013).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-04-27</td>
<td>Authored, Edited</td>
</tr>
<tr>
<td>2015-06-26</td>
<td>Reviewed</td>
</tr>
</tbody>
</table>

The image shows a diagram representing the hydrolysis process of MCFA-CoA and LCFA-CoA by ACOT2,9, THEM4,5. The diagram illustrates the reaction products, including MCFA and LCFA, and the involvement of the mitochondrial matrix.
The maintenance/regulation of cellular levels of free fatty acids and fatty acyl-CoAs (the activated form of free fatty acids) is extremely important, as imbalances in lipid metabolism can have serious consequences for human health. Free fatty acids can act as detergents to disrupt membranes so their generation is normally tightly regulated to states where they will be rapidly consumed or sequestered. Acyl-coenzyme A thioesterases (ACOTs) hydrolyse the thioester bond in medium- to long-chain fatty acyl-CoAs (of C12-C18 lengths) (MCFA-CoA, LCFA-CoA) to their free fatty acids (MCFA, LCFA) (Cohen 2013, Hunt et al. 2012, Kirkby et al. 2010). ACOTs that function in the cytosol are ACOT1 (Hunt et al. 2005), ACOT11 (Adams et al. 2001), ACOT12 trimer (Swarbrick et al. 2014), ACOT13 tetramer (Cao et al. 2009, Cheng et al. 2006), ACOT7 hexamer (Hunt et al. 2005b) and ACOT7L dimer (Jiang et al. 2006).

Recent mouse studies reveals a key regulatory role for PCTP in lipid and glucose metabolism. Phosphatidylcholine transfer protein (PCTP aka STARD2) is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain superfamily, a functionally diverse group of proteins that share a unique structural motif for binding lipids. PCTP appears to limit access of fatty acids to mitochondria by binding to (Ersoy et al. 2013) and stimulating the activity of acyl-coenzyme A thioesterase 13 (ACOT13, aka Acyl-CoA thioesterase 13, THEM2), an enzyme that catalyses the hydrolysis of acyl-CoAs to their free fatty acids (Kawano et al. 2014). Ultimately, insulin signaling is downregulated (Kang et al. 2010).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-04-27</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2015-06-26</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>

https://reactome.org
Acyl-CoA-binding domain-containing protein 6 (ACBD6) has an acyl-CoA binding domain at its N terminus and two ankyrin motifs at its C terminus. ACBD6 binds long-chain acyl-CoAs (LCFA-CoA) with a strong preference for unsaturated, C18:1-CoA and C20:4-CoA, over saturated, C16:0-CoA substrates. ACBD6 is expressed in tissues and progenitor cells with functions in blood and vessel development (Soupene et al. 2008). A possible role of ACBD6 could be to protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilising enzymes (Soupene & Kuypers 2015).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-12-07</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2016-04-05</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
DBI, ACBD7 bind MCFA-CoA and LCFA-CoA

Location: Mitochondrial Fatty Acid Beta-Oxidation

Stable identifier: R-HSA-8848246

Type: binding

Compartments: endoplasmic reticulum lumen

Acyl-CoA-binding protein (DBI, aka ACBP) can bind medium- and long-chain acyl-CoA esters (MCFA-CoA, LCFA-CoA) with very high affinity. It is localised to the ER (and Golgi) and may function as an intracellular carrier of acyl-CoA esters (Hansen et al. 2008, Bloksgaard et al. 2014). Acyl-CoA-binding domain-containing protein 7 (ACBD7) shares around 60% sequence homology with DBI and is proposed to also bind fatty acyl-CoAs but its function is yet to be determined.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-12-07</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2016-04-05</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

Mitochondrial Fatty Acid Beta-Oxidation 2

mitochondrial fatty acid beta-oxidation of saturated fatty acids 4

mitochondrial fatty acid beta-oxidation of unsaturated fatty acids 5

ACAD10 dehydrogenates S-2MPDA-CoA 6

ACAD11 dehydrogenates BH-CoA 7

Propionyl-CoA catabolism 8

ACAA2 tetramer transfers acyl group from Ac-CoA to acyl-CoA forming 3OA-CoA and CoA-SH 9

MCAT transfers Mal from Mal-CoA to NDUFAB1 10

ACSF2 ligates CoA-SH to MCFA 11

ACOT2,9,THEM4,5 hydrolyse MCFA-CoA, LCFA-CoA 12

Cytosolic ACOTs hydrolyse MCFA-CoA, LCFA-CoA 13

ACBD6 binds LCFA-CoA 15

DBI, ACBD7 bind MCFA-CoA and LCFA-CoA 16

Table of Contents 17