Cell Cycle, Mitotic

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

24/09/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 70

This document contains 6 pathways (see Table of Contents)

https://reactome.org
The events of replication of the genome and the subsequent segregation of chromosomes into daughter cells make up the cell cycle. DNA replication is carried out during a discrete temporal period known as the S (synthesis)-phase, and chromosome segregation occurs during a massive reorganization of cellular architecture at mitosis. Two gap-phases separate these cell cycle events: G1 between mitosis and S-phase, and G2 between S-phase and mitosis. Cells can exit the cell cycle for a period and enter a quiescent state known as G0, or terminally differentiate into cells that will not divide again, but undergo morphological development to carry out the wide variety of specialized functions of individual tissues.

A family of protein serine/threonine kinases known as the cyclin-dependent kinases (CDKs) controls progression through the cell cycle. As the name suggests, the kinase activity of the catalytic subunits is dependent on binding to cyclin partners, and control of cyclin abundance is one of several mechanisms by which CDK activity is regulated throughout the cell cycle.

A complex network of regulatory processes determines whether a quiescent cell (in G0 or early G1) will leave this state and initiate the processes to replicate its chromosomal DNA and divide. This regulation, during the Mitotic G1-G1/S phases of the cell cycle, centers on transcriptional regulation by the DREAM complex, with major roles for D and E type cyclin proteins.

Chromosomal DNA synthesis occurs in the S phase, or the synthesis phase, of the cell cycle. The cell duplicates its hereditary material, and two copies of each chromosome are formed. A key aspect of the regulation of DNA replication is the assembly and modification of a pre-replication complex assembled on ORC proteins.

Mitotic G2-G2/M phases encompass the interval between the completion of DNA synthesis and the beginning of mitosis. During G2, the cytoplasmic content of the cell increases. At G2/M transition, duplicated centrosomes mature and separate and CDK1:cyclin B complexes become active, setting the stage for
spindle assembly and chromosome condensation at the start of mitotic **M phase**. Mitosis, or M phase, results in the generation of two daughter cells each with a complete diploid set of chromosomes. Events of the **M/G1 transition**, progression out of mitosis and division of the cell into two daughters (cytokinesis) are regulated by the Anaphase Promoting Complex.

The Anaphase Promoting Complex or Cyclosome (APC/C) plays additional roles in **regulation of the mitotic cell cycle**, insuring the appropriate length of the G1 phase. The APC/C itself is regulated by phosphorylation and interactions with checkpoint proteins.

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-01-01</td>
<td>Authored</td>
<td>O'Donnell, M., Walworth, N., Bosco, G.</td>
</tr>
<tr>
<td>2010-01-19</td>
<td>Revised</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2011-06-15</td>
<td>Reviewed</td>
<td>Grana, X.</td>
</tr>
<tr>
<td>2011-08-25</td>
<td>Reviewed</td>
<td>MacPherson, D.</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>Revised</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2013-11-25</td>
<td>Edited</td>
<td>Gopinathrao, G., Matthews, L.</td>
</tr>
<tr>
<td>2018-07-10</td>
<td>Reviewed</td>
<td>Manfredi, JJ.</td>
</tr>
</tbody>
</table>
Mitotic G1-G1/S phases

Location: Cell Cycle, Mitotic

Stable identifier: R-HSA-453279

Mitotic G1-G1/S phase involves G1 phase of the mitotic interphase and G1/S transition, when a cell commits to DNA replication and division genetic and cellular material to two daughter cells.

During early G1, cells can enter a quiescent G0 state. In quiescent cells, the evolutionarily conserved DREAM complex, consisting of the pocket protein family member p130 (RBL2), bound to E2F4 or E2F5, and the MuvB complex, represses transcription of cell cycle genes (reviewed by Sadasivam and DeCaprio 2013).

During early G1 phase in actively cycling cells, transcription of cell cycle genes is repressed by another pocket protein family member, p107 (RBL1), which forms a complex with E2F4 (Ferreira et al. 1998, Cobrinik 2005). RB1 tumor suppressor, the product of the retinoblastoma susceptibility gene, is the third member of the pocket protein family. RB1 binds to E2F transcription factors E2F1, E2F2 and E2F3 and inhibits their transcriptional activity, resulting in prevention of G1/S transition (Chellappan et al. 1991, Bagchi et al. 1991, Chittenden et al. 1991, Lees et al. 1993, Hiebert 1993, Wu et al. 2001). Once RB1 is phosphorylated on serine residue S795 by Cyclin D:CDK4/6 complexes, it can no longer associate with and inhibit E2F1-3. Thus, CDK4/6-mediated phosphorylation of RB1 leads to transcriptional activation of E2F1-3 target genes needed for the S phase of the cell cycle (Connell-Crowley et al. 1997). CDK2, in complex with cyclin E, contributes to RB1 inactivation and also activates proteins needed for the initiation of DNA replication (Zhang 2007). Expression of D type cyclins is regulated by extracellular mitogens (Cheng et al. 1998, Depoortere et al. 1998). Catalytic activities of CDK4/6 and CDK2 are controlled by CDK inhibitors of the INK4 family (Serrano et al. 1993, Hannon and Beach 1994, Guan et al. 1994, Guan et al. 1996, Parry et al. 1995) and the Cip/Kip family, respectively.
Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01-19</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2010-01-20</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2011-06-15</td>
<td>Reviewed</td>
<td>Grana, X.</td>
</tr>
<tr>
<td>2011-08-25</td>
<td>Reviewed</td>
<td>MacPherson, D.</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>Authored, Revised</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2017-02-08</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2018-07-10</td>
<td>Reviewed</td>
<td>Manfredi, JJ.</td>
</tr>
</tbody>
</table>
DNA synthesis occurs in the S phase, or the synthesis phase, of the cell cycle. The cell duplicates its hereditary material, and two copies of the chromosome are formed. As DNA replication continues, the E type cyclins shared by the G1 and S phases, are destroyed and the levels of the mitotic cyclins rise.

Editions

2018-07-10 Reviewed Manfredi, JJ.
Mitotic G2 (gap 2) phase is the second growth phase during eukaryotic mitotic cell cycle. G2 encompasses the interval between the completion of DNA synthesis and the beginning of mitosis. During G2, the cytoplasmic content of the cell increases. At G2/M transition, duplicated centrosomes mature and separate and CDK1:cyclin B complexes become active, setting the stage for spindle assembly and chromosome condensation that occur in the prophase of mitosis (O’Farrell 2001, Bruinsma et al. 2012, Jiang et al. 2014).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-03-24</td>
<td>Edited</td>
<td></td>
</tr>
<tr>
<td>2018-07-10</td>
<td>Reviewed</td>
<td>Manfredi, JJ.</td>
</tr>
</tbody>
</table>
M Phase ↗

Location: Cell Cycle, Mitotic

Stable identifier: R-HSA-68886

Mitosis, or the M phase, involves nuclear division and cytokinesis, where two identical daughter cells are produced. Mitosis involves prophase, prometaphase, metaphase, anaphase, and telophase. Finally, cytokinesis leads to cell division. The phase between two M phases is called the interphase; it encompasses the G1, S, and G2 phases of the cell cycle.

Editions

2018-07-10 Reviewed Manfredi, JJ.
Regulation of mitotic cell cycle

Location: Cell Cycle, Mitotic

Stable identifier: R-HSA-453276

Regulation of mitotic cell cycle currently covers APC/C-mediated degradation of cell cycle proteins.

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01-19</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2018-07-10</td>
<td>Reviewed</td>
<td>Manfredi, JJ.</td>
</tr>
</tbody>
</table>
Table of Contents

- Introduction 1
- Cell Cycle, Mitotic 2
 - Mitotic G1-G1/S phases 4
 - S Phase 6
 - Mitotic G2-G2/M phases 7
 - M Phase 8
 - Regulation of mitotic cell cycle 9

Table of Contents 10