PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

Matthews, L., Orlic-Milacic, M., Porteu, F., Thorpe, L., Wakelam, M., Williams, MG., Yuzugullu, H., Zhao, JJ.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

19/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 7 reactions (see Table of Contents)

https://reactome.org
Phosphatidylinositol-5-phosphate (PI5P) may modulate PI3K/AKT signaling in several ways. PI5P is used as a substrate for production of phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2 (Rameh et al. 1997, Clarke et al. 2008, Clarke et al. 2010, Clarke and Irvine 2013, Clarke et al. 2015), which serves as a substrate for activated PI3K, resulting in the production of PIP3 (Mandelker et al. 2009, Burke et al. 2011). The majority of PI(4,5)P2 in the cell, however, is produced from the phosphatidylinositol-4-phosphate (PI4P) substrate (Zhang et al. 1997, Di Paolo et al. 2002, Oude Weernink et al. 2004, Halstead et al. 2006, Oude Weernink et al. 2007). PIP3 is necessary for the activating phosphorylation of AKT. AKT1 can be de-activated by the protein phosphatase 2A (PP2A) complex that contains a regulatory subunit B56-beta (PPP2R5B) or B56-gamma (PPP2R5C). PI5P inhibits AKT1 dephosphorylation by PP2A through an unknown mechanism (Ramel et al. 2009). Increased PI5P levels correlate with inhibitory phosphorylation(s) of the PP2A complex. MAPK1 (ERK2) and MAPK3 (ERK1) are involved in inhibitory phosphorylation of PP2A, in a process that involves IER3 (IEX-1) (Letourneux et al. 2006, Rocher et al. 2007). It is uncertain, however, whether PI5P is in any way involved in ERK-mediated phosphorylation of PP2A or if it regulates another PP2A kinase.

Literature references

PI4P is phosphorylated to PI(4,5)P2 by PIP5K1A-C at the plasma membrane

Location: PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

Stable identifier: R-HSA-1676082