Fanconi Anemia Pathway

Fugger, K., Huang, TT., Kadambat Nair, S., Matthews, L., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

09/09/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 81

This document contains 2 pathways and 13 reactions (see Table of Contents)
Fanconi anemia (FA) is a genetic disease of genome instability characterized by congenital skeletal defects, aplastic anemia, susceptibility to leukemias, and cellular sensitivity to DNA damaging agents. Patients with FA have been categorized into at least 15 complementation groups (FA-A, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O and -P). These complementation groups correspond to the genes FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCJ/BRIP1, FANCL, FANCM, FANCN/PALB2, FANCO/RAD51C and FANCP/SLX4. Eight of these proteins, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM, together with FAAP24, FAAP100, FAAP20, APITD1 and STRA13, form a nuclear complex termed the FA core complex. The FA core complex is an E3 ubiquitin ligase that recognizes and is activated by DNA damage in the form of interstrand crosslinks (ICLs), triggering monoubiquitination of FANCD2 and FANCI, which initiates repair of ICL-DNA.

FANCD2 and FANCI form a complex and are mutually dependent on one another for their respective monoubiquitination. After DNA damage and during S phase, FANCD2 localizes to discrete nuclear foci that colocalize with proteins involved in homologous recombination repair, such as BRCA1 and RAD51. The FA pathway is regulated by ubiquitination and phosphorylation of FANCD2 and FANCI. ATR-dependent phosphorylation of FANCI and FANCD2 promotes monoubiquitination of FANCD2, stimulating the FA pathway (Cohn and D'Andrea 2008, Wang 2007). The complex of USP1 and WDR48 (UAF1) is responsible for deubiquitination of FANCD2 and negatively regulates the FA pathway (Cohn et al. 2007).

Monoubiquitinated FANCD2 recruits DNA nucleases, including SLX4 (FANCP) and FAN1, which unhook the ICL from one of the two covalently linked DNA strands. The DNA polymerase nu (POLN) performs translesion DNA synthesis using the DNA strand with unhooked ICL as a template, thereby bypassing the unhooked ICL. The unhooked ICL is subsequently removed from the DNA via nucleotide excision repair (NER). Incision of the stalled replication fork during the unhooking step generates a double strand break (DSB). The DSB is repaired via homologous recombination repair (HRR) and involves the FA genes BRCA2 (FANCD1), PALB2 (FANCN) and BRIP1 (FANCJ) (reviewed by Deans and West 2011, Kottemann...
and Smogorzewska 2013). Homozygous mutations in BRCA2, PALB2 or BRIP1 result in Fanconi anemia, while heterozygous mutations in these genes predispose carriers to primarily breast and ovarian cancer. Well established functions of BRCA2, PALB2 and BRIP1 in DNA repair are BRCA1 dependent, but it is not yet clear whether there are additional roles for these proteins in the Fanconi anemia pathway that do not rely on BRCA1 (Evans and Longo 2014, Jiang and Greenberg 2015). Heterozygous BRCA1 mutations predispose carriers to breast and ovarian cancer with high penetrance. Complete loss of BRCA1 function is embryonic lethal. It has only recently been reported that a partial germline loss of BRCA1 function via mutations that diminish protein binding ability of the BRCT domain of BRCA1 result in a FA-like syndrome. BRCA1 has therefore been designated as the FANCS gene (Jiang and Greenberg 2015).

The FA pathway is involved in repairing DNA ICLs that arise by exposure to endogenous mutagens produced as by-products of normal cellular metabolism, such as aldehyde containing compounds. Disruption of the aldehyde dehydrogenase gene ALDH2 in FANCD2 deficient mice leads to severe developmental defects, early lethality and predisposition to leukemia. In addition to this, the double knockout mice are exceptionally sensitive to ethanol consumption, as ethanol metabolism results in accumulated levels of aldehydes (Langevin et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-02</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Reviewed</td>
<td>Huang, TT.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2015-06-11</td>
<td>Authored, Edited, Revised</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
FANCM binds FAAP24

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785607

Type: binding

Compartments: nucleoplasm

FANCM binds FAAP24, forming a complex that recognizes DNA interstrand crosslinks, thus triggering the Fanconi anemia repair pathway (Ciccia et al. 2007, Kim et al. 2008).

Followed by: FANCM:FAAP24 and APITD1:STRA13 bind ICL-DNA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
FANCM:FAAP24 and APITD1:STRA13 bind ICL-DNA

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785087

Type: binding

Compartments: nucleoplasm

A complex composed of FANCM and FAAP24 is constitutively associated with chromatin (Ciccia et al. 2007, Kim et al. 2008). Chromatin localization of the FANCM:FAAP24 complex is facilitated by the octameric MHF complex (Tao et al. 2012) composed of four dimers of two histone-like proteins: APITD1 (MHF1, FAAP16) and STRA13 (MHF2, FAAP10) (Singh et al. 2010). The complex of FANCM, FAAP24, APITD1 and STRA13 may constitute a molecular machine that preferentially binds to replication forks stalled at DNA interstrand crosslinks (ICL-DNA), with FANCM preferentially binding to the branch point, FAAP24 to the single strand DNA (ssDNA) and the MHF complex to the double strand DNA (Yan et al. 2010).

Preceded by: FANCM binds FAAP24

Followed by: FA core complex assembles at DNA interstrand crosslinks (ICLs)

Literature references

Editions

2015-06-29 Authored, Edited Orlic-Milacic, M.
2015-08-20 Reviewed Fugger, K.
FA core complex assembles at DNA interstrand crosslinks (ICLs)

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785126

Type: binding

Compartments: nucleoplasm

In addition to FANCM, FAAP24, APITD1 (MHF1) and STRA13 (MHF2), the FA core complex also includes FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FAAP20 and FAAP100 (Singh et al. 2010, Yan et al. 2010, Leung et al. 2012). While FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL, and probably FAAP20 and FAAP100, can assemble a complex in the nucleoplasm, they are unable to load onto DNA in the absence of FANCM and FAAP24 (Kim et al. 2008, Yan et al. 2010, Leung et al. 2012).

Preceded by: FANCM:FAAP24 and APITD1:STRA13 bind ICL-DNA

Followed by: FANCD2:FANCI complex and UBE2T bind ICL-DNA associated with the FA core complex

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
FANCD2 binds FANCI

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785594

Type: binding

Compartments: nucleoplasm

FANCD2 binds FANCI, forming the ID2 complex (Yuan et al. 2009, Joo et al. 2011). The ID2 complex plays an important role in the repair of DNA interstrand crosslinks (the Fanconi anemia pathway).

Followed by: FANCD2:FANCI complex and UBE2T bind ICL-DNA associated with the FA core complex

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
FANCD2:FANCI complex and UBE2T bind ICL-DNA associated with the FA core complex

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785342

Type: binding

Compartments: nucleoplasm

The ID2 complex, composed of FANCD2 and FANCI, binds to branched DNA structures, such as stalled replication forks at DNA interstrand crosslinks (ICL-DNA) (Yuan et al. 2009, Longerich et al. 2009, Joo et al. 2011). The ID2 complex also interacts with the FA core complex component FANCL, activating the E3 ubiquitin ligase activity of FANCL (Rajendra et al. 2014, Longerich et al. 2014). Up to fifty FANCD2 molecules (ID2 complexes) may be recruited per one ICL, probably spreading to surrounding DNA (Douwel et al. 2014). The E2 ubiquitin ligase UBE2T is recruited to ICL-DNA by binding to the FANCL subunit of the FA core complex independently of the ID2 complex (Machida et al. 2006, Alpi et al. 2007, Hodson et al. 2014).

Preceded by: FANCD2 binds FANCI, FA core complex assembles at DNA interstrand crosslinks (ICLs)

Followed by: The complex of ATR and ATRIP is recruited to ICL-DNA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
The complex of ATR and ATRIP (ATR:ATRIP) is recruited to replication forks blocked by DNA interstrand crosslinks (ICL-DNA) through interaction with the RPA complex and the Fanconi anemia (FA) core complex. The RPA heterotrimer associates both with single strand DNA (ssDNA) that is produced by DNA resection at ICL-DNA-stalled replication forks and with the FANCM and FAAP24 components of the FA core complex (Huang et al. 2010). ATRIP directly interacts with the FANCL component of the FA core complex (Tomida et al. 2013). The presence of RAD17 and TOPB1, which is required for ATR activation at DNA double strand breaks (DSBs), is not needed for ATR activation at ICL-DNA (Tomida et al. 2013).

Preceded by: FANCD2:FANCI complex and UBE2T bind ICL-DNA associated with the FA core complex

Followed by: ATR phosphorylates RPA2, FANCI, FANCD2 and FANCM at ICL-DNA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
ATR phosphorylates RPA2, FANCI, FANCD2 and FANCM at ICL-DNA

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6788392

Type: transition

Compartments: nucleoplasm

ATR phosphorylates several proteins at DNA interstrand crosslinks (ICL-DNA), with ATR activity at ICL-DNA being independent of the presence of RAD17 and TOPBP1 (Shigechi et al. 2012, Tomida et al. 2013). Besides phosphorylating the RPA2 subunit of the RPA heterotrimeric complex (Huang et al. 2010), activated ATR also phosphorylates the Fanconi anemia core complex component FANCM on serine residue S1045 (Singh et al. 2013). ATR-mediated phosphorylation of FANCM is thought to be important for the progression of ICL repair, although the mechanism is not known. The critical ATR substrate at ICL-DNA is considered to be FANCI component of the ID2 complex. ATR-mediated phosphorylation of FANCI, at least on serine residues S556, S559, S565 and S617, is a prerequisite for FANCD2 monoubiquitination (Ishiai et al. 2008, Shigechi et al. 2012). FANCD2 itself is also phosphorylated by ATR on threonine residue T691 and serine residue S717, which promotes FANCD2 monoubiquitination and enhances cellular resistance to DNA crosslinking agents (Ho et al. 2006).

Preceded by: The complex of ATR and ATRIP is recruited to ICL-DNA

Followed by: Monoubiquitination of FANCD2:FANCI

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-02</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Reviewed</td>
<td>Huang, TT.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2015-06-29</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-07-21</td>
<td>Authored, Revised</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
FANCD2 and FANCI, the components of the ID2 complex, are monoubiquitinated at DNA interstrand crosslinks (ICL-DNA) by the coordinated action of the E2 ubiquitin ligase UBE2T and the E3 ubiquitin ligase FANCL (Machida et al. 2006, Alpi et al. 2007, Sims et al. 2007, Smogorzewska et al. 2007, Longerich et al. 2009, Sato et al. 2012, Hodson et al. 2014). FANCL achieves the maximal catalytic activity as part of the ICL-DNA-bound FA core complex, and requires the presence of at least FANCB and FAAP100 subunits of the FA core complex to monoubiquitinate the ID2 complex (Rajendra et al. 2014, Longerich et al. 2014). FANCD2 is monoubiquitinated on lysine residue K561, while FANCI is monoubiquitinated on lysine residue K523 (Alpi et al. 2008, Longerich et al. 2014). In the absence of FANCD2, a DNA-bound FANCI can be monoubiquitinated in a FANCL-independent manner (Longerich et al. 2014).

UBE2T is also monoubiquitinated by FANCL on lysine residues K91 and K182 during the process of ID2 monoubiquitination. Monoubiquitination of UBE2T may serve as a self-inactivating mechanism that negatively regulates the Fanconi anemia pathway (Machida et al. 2006).

Preceded by: ATR phosphorylates RPA2, FANCI, FANCD2 and FANCM at ICL-DNA

Followed by: FANCD2 deubiquitination by USP1:WDR48, DNA nucleases bind monoubiquitinated ID2 complex

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-02</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Reviewed</td>
<td>Huang, TT.</td>
</tr>
<tr>
<td>2009-05-20</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2015-06-29</td>
<td>Edited, Revised</td>
<td>Orlj-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
The FA pathway is negatively regulated through the USP1:WDR48-mediated deubiquitination of FANCD2 (Nijman et al. 2005). WDR48 (UAF1) forms a complex with and activates USP1 (Cohn et al. 2007).

Preceded by: Monoubiquitination of FANCD2:FANCI

Literature references

DNA nucleases bind monoubiquitinated ID2 complex

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6785732

Type: binding

Compartments: nucleoplasm

Several DNA nucleases bind to interstrand crosslinks (ICL-DNA) and participate in ICL "unhooking". The ubiquitin-binding zinc finger (UBZ) domain of the DNA nuclease FAN1 binds to monoubiquitinated FANCD2, enabling the recruitment of FAN1 to the ICL-DNA repair site (Liu et al. 2010, MacKay et al. 2010, Smogorzewska et al. 2010, Kratz et al. 2010). Once recruited to ICL-DNA, FAN1 forms head-to-tail homodimers. Homodimerization is important for the endonucleolytic activity of FAN1 (Zhao et al. 2014). SLX4 (FANCP) serves as a docking platform for recruitment of SLX1A, MUS81 and EME1 or EME2, resulting in formation of the SLX1A:SLX4:MUS81:EME1 (or SLX1A:SLX4:MUS81:EME2) endonucleolytic complex (Fekairi et al. 2009, Wyatt et al. 2013). SLX4 can also bind the endonucleolytic complex composed of ERCC1 and ERCC4 (XPF) (Fekairi et al. 2009). SLX4 is recruited to ICL-DNA through interaction of the UBZ domain of SLX4 with monoubiquitinated FANCD2 (Yamamoto et al. 2011). Targeted deletion of the UBZ domain of SLX4 confers sensitivity to ICL-inducing agents, but the UBZ domain seems to be dispensable for the role of SLX4 in homologous recombination repair (Yamamoto et al. 2011).

DNA exonucleases DCLRE1A (SNM1A) and DCLRE1B (SNM1B) likely function redundantly in ICL repair. Similar to FAN1, they are able to digest the DNA past the ICL, thereby unhooking one of the DNA strands (Wang et al. 2011, Sengerova et al. 2012). Monoubiquitination of the PCNA subunit of the stalled replicative polymerase complex by RAD18 may provide the docking site for DCLRE1A (or DCLRE1B) (Yang et al. 2010). In addition, PIAS1 may facilitate loading of DCLRE1A (or DCLRE1B) to ICL sites (Ishiai et al. 2004).

Preceded by: Monoubiquitination of FANCD2:FANCI

Followed by: DNA nucleases unhook the interstrand crosslink (ICL)

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
Unhooking of interstrand crosslinks (ICLs) from damaged DNA (ICL-DNA) involves coordinated action of several DNA nucleases: FAN1, DCLRE1A or DCLRE1B, the complex of ERCC1 and ERCC4 (XPF), and the complex of SLX4 (FANCP), SLX1A, MUS81 and EME1 or EME2. These DNA nucleases incise ICL-DNA at both sides of the ICL, thus removing the covalent bond between the two DNA strands. The exact sequence of incision steps has not been determined and it is possible that some of the implicated nucleases act in a redundant manner.

FAN1 exhibits 5'->3' endonuclease activity, as well as 5'->3' exonuclease activity, with a preference for 5' flaps and branched DNA structures (Smogorzewska et al. 2010, Kratz et al. 2010, MacKay et al. 2010, Liu et al. 2010). The FAN1 head-to-tail homodimer recognizes the lesion, orients and unwinds the 5' flap (Zhao et al. 2014). FAN1 requires a 5' terminal phosphate anchor and successively cleaves the DNA at every third nucleotide (Wang et al. 2014). This suggests that an incision 5' to the ICL precedes the action of FAN1.

ERCC4 (XPF) in complex with ERCC1 may perform the first endonucleolytic incision 5' to the ICL (Wang et al. 2011), while MUS81 in complex with EME1 or EME2 may act as a backup endonuclease. DCLRE1A (SNM1A) exhibits a 5'->3' exonuclease activity and can digest past the ICL, thereby unhooking it from one DNA strand after the ERCC1:ERCC4 complex does the initial incision 5' to the ICL (Wang et al. 2011). DCLRE1A functions redundantly with DCLRE1B (SNM1B) in ICL repair (Ishiai et al. 2004, Sangerova et al. 2012).

Preceded by: DNA nucleases bind monoubiquitinated ID2 complex
Followed by: POLN binds ICL-DNA
Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor/Reviewed</th>
<th>Author/Editor/Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlíc-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
POLN binds ICL-DNA

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-6786155

Type: binding

Compartments: nucleoplasm

An error-prone DNA polymerase nu (POLN) is recruited to the interstrand crosslink (ICL) repair site through interaction with monoubiquitinated FANCD2 and probably the PCNA subunit of the stalled replication complex (Moldovan et al. 2010).

Preceded by: DNA nucleases unhook the interstrand crosslink (ICL)

Followed by: Translesion synthesis across unhooked ICL by POLN

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
The error-prone DNA polymerase nu (POLN) performs translesion DNA synthesis using the DNA strand with unhooked interstrand crosslink (ICL) as a template, thereby bypassing the unhooked ICL (Moldovan et al. 2010, Yamanaka et al. 2010). The DNA strand with unhooked ICL is subsequently repaired via nucleotide excision repair (NER), while the double strand break (DSB) generated by incision of the stalled replication fork during the unhooking step is repaired via homologous recombination repair (HRR) (reviewed by Kottemann and Smogorzewska 2013, Deans and West 2011).

Preceded by: POLN binds ICL-DNA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-06-29</td>
<td>Authored, Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>Reviewed</td>
<td>Fugger, K.</td>
</tr>
</tbody>
</table>
Drug-induced formation of DNA interstrand crosslinks

Location: Fanconi Anemia Pathway

Stable identifier: R-HSA-9750126

This pathway describes how drugs commonly used in the treatment of cancer, psoriasis and severe atopic dermatitis produce DNA interstrand crosslinks that are repaired through the Fanconi anemia pathway. For review, please refer to Deans and West 2011, Fu et al. 2012, and Rycenga and Long 2018.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-02-01</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2021-07-28</td>
<td>Reviewed</td>
<td>Kadambat Nair, S.</td>
</tr>
<tr>
<td>2021-08-09</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
Table of Contents

- **Introduction**

- **Fanconi Anemia Pathway**
 - FANCM binds FAAP24
 - FANCM:FAAP24 and APITD1:STRA13 bind ICL-DNA
 - FA core complex assembles at DNA interstrand crosslinks (ICLs)
 - FANCD2 binds FANCI
 - FANCD2:FANCI complex and UBE2T bind ICL-DNA associated with the FA core complex
 - The complex of ATR and ATRIP is recruited to ICL-DNA
 - ATR phosphorylates RPA2, FANCI, FANCD2 and FANCM at ICL-DNA
 - Monoubiquitination of FANCD2:FANCI
 - FANCD2 deubiquitination by USP1:WDR48
 - DNA nucleases bind monoubiquitinated ID2 complex
 - DNA nucleases unhook the interstrand crosslink (ICL)
 - POLN binds ICL-DNA
 - Translesion synthesis across unhooked ICL by POLN
 - Drug-induced formation of DNA interstrand crosslinks