RHO GTPases Activate NADPH Oxidases

Ballmer-Hofer, K., Berger, P., Garapati, P V., Jupe, S., Kuijpers, TW., Nüsse, O., Orlic-Milacic, M., Rivero Crespo, F., Shamovsky, V., Welsh, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

10/12/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 71

This document contains 1 pathway and 14 reactions (see Table of Contents)
NADPH oxidases (NOX) are membrane-associated enzymatic complexes that use NADPH as an electron donor to reduce oxygen and produce superoxide (O2-) that serves as a secondary messenger (Brown and Griendling 2009).

NOX2 complex consists of CYBB (NOX2), CYBA (p22phox), NCF1 (p47phox), NCF2 (p67phox) and NCF4 (p40phox). RAC1:GTP binds NOX2 complex in response to VEGF signaling by directly interacting with CYBB and NCF2, leading to enhancement of VEGF-signaling through VEGF receptor VEGFR2, which plays a role in angiogenesis (Ushio-Fukai et al. 2002, Bedard and Krause 2007). RAC2:GTP can also activate the NOX2 complex by binding to CYBB and NCF2, leading to production of superoxide in phagosomes of neutrophils which is necessary for the microbicidal activity of neutrophils (Knaus et al. 1991, Roberts et al. 1999, Kim and Dinauer 2001, Jyoti et al. 2014).

NOX1 complex (composed of NOX1, NOXA1, NOXO1 and CYBA) and NOX3 complex (composed of NOX3, CYBA, NCF1 and NCF2 or NOXA1) can also be activated by binding to RAC1:GTP to produce superoxide (Cheng et al. 2006, Miyano et al. 2006, Ueyama et al. 2006).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-10-24</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2014-12-26</td>
<td>Authored</td>
<td>Rivero Crespo, F.</td>
</tr>
<tr>
<td>2015-02-02</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2018-11-07</td>
<td>Edited</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2018-11-08</td>
<td>Revised</td>
<td>Shamovsky, V.</td>
</tr>
</tbody>
</table>
NADPH oxidase 2 (NOX2) complex binds RAC1

Location: RHO GTPases Activate NADPH Oxidases

Stable identifier: R-HSA-5218827

Type: binding

Compartments: plasma membrane