GLI proteins bind PTCH1 gene

Gillespie, ME., Liu, Y C., Rothfels, K.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

19/09/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 70

This document contains 1 reaction (see Table of Contents)
GLI proteins bind PTCH1 gene

Stable identifier: R-HSA-5635848

Type: binding

Compartments: nucleoplasm

PTCH1 has been identified as a Hh-responsive target in a number of genome-wide ChIP-based screens and each of the GLI proteins enhances transcription through a consensus GLI-binding site in a ligand-dependent manner (Vokes et al, 2007; Vokes et al, 2008; Lee et al, 2010; Agren et al, 2004). Expression of PTCH1 in response to Hh stimulation establishes a negative feedback loop that limits the duration of pathway activation (reviewed in Hui and Angers, 2011).

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-10-30</td>
<td>Edited</td>
<td>Gillespie, ME.</td>
</tr>
<tr>
<td>2014-10-30</td>
<td>Authored</td>
<td>Rothfels, K.</td>
</tr>
<tr>
<td>2014-11-09</td>
<td>Reviewed</td>
<td>Liu, Y C.</td>
</tr>
</tbody>
</table>