Signaling by Retinoic Acid

D'Eustachio, P., Duester, G., Gopinathrao, G., James, O., Jassal, B., Napoli, JL.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

06/06/2020
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 72

This document contains 2 pathways and 10 reactions (see Table of Contents)
Vitamin A (retinol) can be metabolised into active retinoid metabolites that function either as a chromophore in vision or in regulating gene expression transcriptionally and post-transcriptionally. Genes regulated by retinoids are essential for reproduction, embryonic development, growth, and multiple processes in the adult, including energy balance, neurogenesis, and the immune response. The retinoid used as a cofactor in the visual cycle is 11-cis-retinal (11cRAL). The non-visual cycle effects of retinol are mediated by retinoic acid (RA), generated by two-step conversion from retinol (Napoli 2012). All-trans-retinoic acid (atRA) is the major activated metabolite of retinol. An isomer, 9-cis-retinoic acid (9cRA) has biological activity, but has not been detected in vivo, except in the pancreas. An alternative route involves BCO1 cleavage of carotenoids into retinal, which is then reduced into retinol in the intestine (Harrison 2012). The two isomers of RA serve as ligands for retinoic acid receptors (RAR) that regulate gene expression. (Das et al. 2014). RA is catabolised to oxidised metabolites such as 4-hydroxy-, 18-hydroxy- or 4-oxo-RA by CYP family enzymes, these metabolites then becoming substrates for Phase II conjugation enzymes (Ross & Zolfaghari 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-04-16</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2014-07-28</td>
<td>Reviewed</td>
<td>Duester, G.</td>
</tr>
<tr>
<td>2014-09-01</td>
<td>Reviewed</td>
<td>Napoli, JL.</td>
</tr>
</tbody>
</table>
The major activated retinoid, all-trans-retinoic acid (atRA) is produced by the dehydrogenation of all-trans-retinol (atROL) by members of the short chain dehydrogenase/reductase (SDR) and aldehyde dehydrogenase (RALDH) gene families (Das et al. 2014, Napoli 2012).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-04-16</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2014-07-28</td>
<td>Reviewed</td>
<td>Duester, G.</td>
</tr>
<tr>
<td>2014-09-01</td>
<td>Reviewed</td>
<td>Napoli, JL.</td>
</tr>
</tbody>
</table>
SUMO-CRABP2 binds atRA

Location: Signaling by Retinoic Acid

Stable identifier: R-HSA-5334827