VCP-catalyzed ATP hydrolysis promotes the translocation of Hh-C into the cytosol

D'Eustachio, P., Liu, Y C., Rothfels, K.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 72

This document contains 1 reaction (see Table of Contents)
VCP-catalyzed ATP hydrolysis promotes the translocation of Hh-C into the cytosol

Stable identifier: R-HSA-5362459

Type: transition

Compartments: cytosol

The ATPase activity of VCP is required for the retrotranslocation of Hh-C across the ER membrane (Chen et al, 2011). Although in this pathway, the VCP hexamer is shown as part of the SEL1:SYVN1:DERL2 retrotranslocon, the details, order of events and even the full complement of protein players in this process are not known. In yeast, the VCP homologue Cdc48 is associated with two additional proteins Ufd1 and Npl4 -both of which are also conserved in mammals- and this complex interacts with several ER components including derlins and the yeast SYVN1 homologue, Hrd1 (reviewed in Vembar and Brodsky, 2009). Consistent with the yeast data, VCP interacts with DERL2 by co-immunoprecipitation in HEK293 cells (Huang et al, 2013).

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-04-08</td>
<td>Authored</td>
<td>Rothfels, K.</td>
</tr>
<tr>
<td>2014-04-20</td>
<td>Edited</td>
<td>D’Eustachio, P.</td>
</tr>
<tr>
<td>2014-05-16</td>
<td>Reviewed</td>
<td>Liu, Y C.</td>
</tr>
</tbody>
</table>