T41 mutants of beta-catenin aren't phosphorylated
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 78

This document contains 1 pathway and 1 reaction (see Table of Contents)
T41 mutants of beta-catenin aren't phosphorylated

Stable identifier: R-HSA-5358752

Compartments: cytosol

Diseases: cancer

T41 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear accumulation of the protein (Moreno-Bueno et al, 2002; Taniguchi et al, 2002; reviewed in Polakis, 2012). T41 mutations have been identified in cancers of the liver and brain, as well as in the pituitary, endometrium, large intestine and skin, among others (reviewed in Polakis, 2000; Saito-Diaz et al, 2013).

Literature references

CTNNB1 T41 mutants aren't phosphorylated by GSK3beta

Location: T41 mutants of beta-catenin aren't phosphorylated

Stable identifier: R-HSA-4839638

Type: transition

Compartments: cytosol

Diseases: cancer

T41 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear accumulation of the protein (Moreno-Bueno et al, 2002; Taniguchi et al, 2002; reviewed in Polakis, 2012). T41 mutations have been identified in cancers of the liver and brain, as well as in the pituitary, endometrium, large intestine and skin, among others (reviewed in Polakis, 2000; Saito-Diaz et al, 2013).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-30</td>
<td>Authored</td>
<td>Rothfels, K.</td>
</tr>
<tr>
<td>2014-04-03</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2014-05-12</td>
<td>Reviewed</td>
<td>Salahshor, S.</td>
</tr>
<tr>
<td>2014-05-22</td>
<td>Reviewed</td>
<td>Woodgett, J.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

- T41 mutants of beta-catenin aren't phosphorylated 2
 - CTNNB1 T41 mutants aren't phosphorylated by GSK3beta 3

Table of Contents 4