S33 mutants of beta-catenin aren't phosphorylated

Matthews, L., Rothfels, K., Salahshor, S., Woodgett, J.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 78

This document contains 1 pathway and 1 reaction (see Table of Contents)
S33 mutants of beta-catenin aren't phosphorylated

Stable identifier: R-HSA-5358747

Compartments: cytosol

Diseases: cancer

S33 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear localization of the protein and enhanced WNT signaling (Groen et al, 2008; Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S33 mutations have been identified in cancers of the central nervous system, liver, endometrium and stomach, among others (reviewed in Polakis, 2000).

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-04-02</td>
<td>Authored</td>
<td>Rothfels, K.</td>
</tr>
<tr>
<td>2014-04-03</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2014-05-12</td>
<td>Reviewed</td>
<td>Salahshor, S.</td>
</tr>
<tr>
<td>2014-05-22</td>
<td>Reviewed</td>
<td>Woodgett, J.</td>
</tr>
</tbody>
</table>
CTNNB1 S33 mutants aren't phosphorylated by GSK3beta

Location: S33 mutants of beta-catenin aren't phosphorylated

Stable identifier: R-HSA-4839634

Type: transition

Compartments: cytosol

Diseases: cancer

S33 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear localization of the protein and enhanced WNT signaling (Groen et al, 2008; Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S33 mutations have been identified in cancers of the central nervous system, liver, endometrium and stomach, among others (reviewed in Polakis, 2000).

Literature references


Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Author</th>
<th>Editor</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-30</td>
<td>Authored</td>
<td>Rothfels, K.</td>
<td></td>
</tr>
<tr>
<td>2014-04-03</td>
<td>Edited</td>
<td>Matthews, L.</td>
<td></td>
</tr>
<tr>
<td>2014-05-12</td>
<td>Reviewed</td>
<td>Salahshor, S.</td>
<td></td>
</tr>
<tr>
<td>2014-05-22</td>
<td>Reviewed</td>
<td>Woodgett, J.</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

S33 mutants of beta-catenin aren't phosphorylated 2

CTNNB1 S33 mutants aren't phosphorylated by GSK3beta 3

Table of Contents 4