Metabolism of ingested MeSeO2H into MeSeH

D'Eustachio, P., Rush, MG., Williams, MG.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

17/12/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 83

This document contains 1 pathway and 2 reactions (see Table of Contents)

https://reactome.org
Metabolism of ingested MeSeO2H into MeSeH

Stable identifier: R-HSA-5263617

Methylseleninic acid (MeSeO2H) is reduced to methylselenenic acid (MeSeOH) and then further reduced to methylselenol (MeSeH) by thioredoxin reductase (TXNRD1).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-05-06</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2015-08-29</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2015-08-30</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
</tbody>
</table>
MeSeO2H is reduced to MeSeOH by TXNRD1

Location: Metabolism of ingested MeSeO2H into MeSeH

Stable identifier: R-HSA-5263616

Type: transition

Compartments: cytosol

Thioredoxin reductase 1 (TXNRD1) homodimer is involved in the reduction of methylseleninic acid (MeSeO2H) into methylselenenic acid (MeSeOH) (Gromer and Gross 2002).

Followed by: MeSeOH is reduced to MeSeH by TXNRD1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-05-06</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2015-08-29</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2015-08-30</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
</tbody>
</table>
MeSeOH is reduced to MeSeH by TXNRD1

Location: Metabolism of ingested MeSeO2H into MeSeH

Stable identifier: R-HSA-5263614

Type: transition

Compartments: cytosol

Thioredoxin reductase 1 (TXNRD1) homodimer is involved in the reduction of methylselenenic acid (MeSeOH) into methylselenol (MeSeH) (Gromer and Gross 2002).

Preceded by: MeSeO2H is reduced to MeSeOH by TXNRD1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-05-06</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2015-08-29</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2015-08-30</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

Metabolism of ingested MeSeO2H into MeSeH 2

MeSeO2H is reduced to MeSeOH by TXNRD1 3

MeSeOH is reduced to MeSeH by TXNRD1 4

Table of Contents 5