GPCR ligand binding

Bockaert, J., D'Eustachio, P., Jassal, B., Jupe, S.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

17/10/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 70

This document contains 4 pathways (see Table of Contents)
GPCR ligand binding

Stable identifier: R-HSA-500792

Compartments: plasma membrane

There are more than 800 G-protein coupled receptor (GPCRs) in the human genome, making it the largest receptor superfamily. GPCRs are also the largest class of drug targets, involved in virtually all physiological processes (Frederiksson 2003). GPCRs are receptors for a diverse range of ligands from large proteins to photons (Kristiansen et al. 2004) and have an equal diversity of ligand-binding mechanisms (Gether et al. 2002). Classical GPCR signaling involves signal transduction via heterotrimeric G-proteins, though G-protein independent mechanisms have been reported.

Rhodopsin-like receptors (class A/1) are by far the largest group of GPCRs and the best studied, though a large proportion of the functional and structural studies have focused on a very few members; many remain functionally uncharacterized. This large family can be subdivided into at least 19 subfamilies (Subfamily A1-19) based on phylogenetic analysis (Joost & Methner 2002). Family A includes receptors for a wide variety of ligands including hormones, light and neurotransmitters, encompassing a wide range of functions including many autocrine, paracrine and endocrine processes.

The secretin-like family B/2 GPCRs includes receptors for many hormone-like peptides, such as secretin, calcitonin, parathyroid hormone/parathyroid hormone-related peptides and vasoactive intestinal peptide, which activate adenylyl cyclase and the phosphatidylinositol-calcium pathway (Harmar 2001).

The class C/3 GPCRs include the metabotropic glutamate receptors and taste receptors (Brauner-Osborne et al. 2007). All have a large extracellular N-terminus that structurally resembles a clamshell and has an important role in ligand binding.

Literature references

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-11</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-02-05</td>
<td>Authored</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2010-02-10</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
</tbody>
</table>
Class A/1 (Rhodopsin-like receptors)

Location: GPCR ligand binding

Stable identifier: R-HSA-373076

Rhodopsin-like receptors (class A/1) are the largest group of GPCRs and are the best studied group from a functional and structural point of view. They show great diversity at the sequence level and thus, can be subdivided into 19 subfamilies (Subfamily A1-19) based on a phylogenetic analysis (Joost P and Methner A, 2002). They represent members which include hormone, light and neurotransmitter receptors and encompass a wide range of functions including many autocrine, paracrine and endocrine processes.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-07-03</td>
<td>Authored</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2008-09-01</td>
<td>Reviewed</td>
<td>Bockaert, J.</td>
</tr>
<tr>
<td>2008-09-01</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2016-11-17</td>
<td>Revised</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Class B/2 (Secretin family receptors)

Location: GPCR ligand binding

Stable identifier: R-HSA-373080

This family is known as Family B (secretin-receptor family, family 2) G-protein-coupled receptors. Family B GPCRs include secretin, calcitonin, parathyroid hormone/parathyroid hormone-related peptides and vasoactive intestinal peptide receptors; all of which activate adenylyl cyclase and the phosphatidylinositol-calcium pathway (Harmar AJ, 2001).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-07-14</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2009-05-29</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Class C/3 (Metabotropic glutamate/pheromone receptors)

Location: GPCR ligand binding

Stable identifier: R-HSA-420499

The class C G-protein-coupled receptors are a class of G-protein coupled receptors that include the metabotropic glutamate receptors and several additional receptors (Brauner-Osborne H et al, 2007). Family C GPCRs have a large extracellular N-terminus which binds the orthosteric (endogenous) ligand. The shape of this domain is often likened to a clam. Several allosteric ligands to these receptors have been identified and these bind within the seven transmembrane region.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-12</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2009-05-29</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

• GPCR ligand binding 2
 • Class A/1 (Rhodopsin-like receptors) 4
 • Class B/2 (Secretin family receptors) 5
 • Class C/3 (Metabotropic glutamate/pheromone receptors) 6

Table of Contents 7