Aquaporin-6 passively transports anions out of vesicles

Beitz, E., Calamita, G., MacIver, B., Mathai, JC., May, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

13/11/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
Aquaporin-6 passively transports anions out of vesicles

Stable identifier: R-HSA-432036

Type: transition

Compartments: transport vesicle membrane, cytosol, transport vesicle

Inferred from: Passive Transport of Anions out of Vesicles by Aquaporin-6 (rat) (Rattus norvegicus)

Aquaporin-6 (AQP6) passively transports anions across membranes. Rat AQP6 has been shown to transport anions, with the highest permeability for nitrate, the lowest permeability for fluoride, and low permeability for water. In rat AQP6 is expressed in the acid-secreting type-A intercalated cells of renal ducts where it co-localizes with the proton-ATPase in the membranes of intracellular vesicles. AQP6 is gated by low pH.

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-08-07</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2010-06-24</td>
<td>Reviewed</td>
<td>Beitz, E.</td>
</tr>
<tr>
<td>2010-07-15</td>
<td>Reviewed</td>
<td>Calamita, G.</td>
</tr>
<tr>
<td>2010-07-31</td>
<td>Reviewed</td>
<td>MacIver, B., Mathai, JC.</td>
</tr>
</tbody>
</table>