SUMOylation of SUMOylation proteins

May, B., Niskanen, E.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

11/11/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 1 pathway and 5 reactions (see Table of Contents)

https://reactome.org
SUMOylation processes themselves can be controlled by SUMOylation (reviewed in Wilkinson and Henley 2010). The SUMO E3 ligases PIAS4, RANBP2, and TOPORS are SUMOylated, as is the single SUMO E2 enzyme, UBE2I (UBC9). SUMOylation affects the subcellular location of PIAS4 and TOPORS and affects the activity of PIAS4 and UBE2I.

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Author/Editor</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-03</td>
<td>Author, Edited</td>
<td>May, B.</td>
<td></td>
</tr>
<tr>
<td>2018-05-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
<td></td>
</tr>
<tr>
<td>2018-08-08</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
<td></td>
</tr>
</tbody>
</table>
PIAS4 is SUMOylated at lysine-35 with SUMO1 (Ihara et al. 2005). SUMOylation of PIAS4 at lysine-35 decreases its localization with PML. SUMOylated PIAS4 is able to increase SUMOylation and transcriptional activity of TCF4.

Literature references

RANBP2 SUMOylates RANBP2 with SUMO1

Location: SUMOylation of SUMOylation proteins

Stable identifier: R-HSA-4551649

Type: transition

Compartments: nuclear envelope, nucleoplasm

RANBP2 SUMOylates RANBP2 at lysine-2592, lysine-2650, and lysine-2723 with SUMO1 (Pichler et al. 2002, Pichler et al. 2004, Cooper et al. 2005). RANBP2 does not resemble HECT or RING type SUMO E3 ligases and instead uses hydrophobic interactions with UBE2I (UBC9) to catalyze SUMOylation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-09-13</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-05-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
<tr>
<td>2018-08-08</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
</tbody>
</table>

https://reactome.org
RANBP2 SUMOylates RANBP2 with SUMO2

Location: SUMOylation of SUMOylation proteins

Stable identifier: R-HSA-4551679

Type: transition

Compartments: nuclear envelope, nucleoplasm

RANBP2 SUMOylates RANBP2 at lysine-2652 and lysine-2725 with SUMO2 (Cooper et al. 2005, Hendriks et al. 2014).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-09-13</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-05-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
<tr>
<td>2018-08-08</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
</tbody>
</table>
SUMOylation of TOPORS with SUMO1

Location: SUMOylation of SUMOylation proteins

Stable identifier: R-HSA-4551683

Type: transition

Compartments: nucleoplasm

TOPORS is SUMOylated at lysine-560 with SUMO1 (Weger et al. 2003).

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Authored, Edited</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-09-13</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-05-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
<tr>
<td>2018-06-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
<tr>
<td>2018-08-08</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
</tbody>
</table>
SUMOylation of UBE2I with SUMO1

Location: SUMOylation of SUMOylation proteins

Stable identifier: R-HSA-4085350

Type: transition

Compartments: nucleoplasm

UBE2I (UBC9) is SUMOylated at lysine-14 with SUMO1 (Knipscheer et al. 2008). SUMOylation alters the target specificity of UBE2I, decreasing its SUMOylation activity towards RanGAP1 and increasing it towards SP100.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-03</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2018-05-09</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
<tr>
<td>2018-08-08</td>
<td>Reviewed</td>
<td>Niskanen, E.</td>
</tr>
</tbody>
</table>

https://reactome.org
Table of Contents

- Introduction
- SUMOylation of SUMOylation proteins
 - SUMOylation of PIAS4 with SUMO1
 - RANBP2 SUMOylates RANBP2 with SUMO1
 - RANBP2 SUMOylates RANBP2 with SUMO2
 - SUMOylation of TOPORS with SUMO1
 - SUMOylation of UBE2I with SUMO1

Table of Contents