NEU3 hydrolyzes Neu5Ac from glycoconjugates

Jassal, B., Medrano, JF., Wickramasinghe, S.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

15/11/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
NEU3 hydrolyzes Neu5Ac from glycoconjugates

Stable identifier: R-HSA-4084994

Type: transition

Compartments: cytosol, plasma membrane

Sialidases 1-4 (NEU1-4, neuraminidases, receptor-destroying enzymes, RDEs) hydrolyze sialic acids (N-acetylneuraminic acid, Neu5Ac) to produce asialo compounds, a step in the degradation process of glycoproteins and gangliosides and are expressed in a variety of cellular locations. NEU3 localizes to the plasma membrane and hydrolyses Neu5Ac especially from gangliosides with alpha2,3- or alpha2,8-linkages present in the lipid bilayer (Wada et al. 1999, Monti et al. 2000). By regulating the composition of the lipid bilayer, NEU3 has been identified as an important regulator of trans-membrane signaling (Miyagi et al. 2008).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-01</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2014-01-08</td>
<td>Reviewed</td>
<td>Wickramasinghe, S., Medrano, JF.</td>
</tr>
</tbody>
</table>