Glucagon-like Peptide-1 (GLP1) regulates insulin secretion

Beitz, E., Calamita, G., Gillespie, ME., Gopinathrao, G., Jassal, B., May, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

13/06/2020
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 72

This document contains 1 pathway and 11 reactions ([see Table of Contents](https://reactome.org))
Glucagon-like Peptide-1 (GLP1) regulates insulin secretion

Stable identifier: R-HSA-381676

Compartments: cytosol, plasma membrane

Glucagon-like Peptide-1 (GLP-1) is secreted by L-cells in the intestine in response to glucose and fatty acids. GLP-1 circulates to the beta cells of the pancreas where it binds a G-protein coupled receptor, GLP-1R, on the plasma membrane. The binding activates the heterotrimeric G-protein G(s), causing the alpha subunit of G(s) to exchange GDP for GTP and dissociate from the beta and gamma subunits.

The activated G(s) alpha subunit interacts with Adenylyl Cyclase VIII (Adenylate Cyclase VIII, AC VIII) and activates AC VIII to produce cyclic AMP (cAMP). cAMP then has two effects: 1) cAMP activates Protein Kinase A (PKA), and 2) cAMP activates Epac1 and Epac2, two guanyl nucleotide exchange factors.

Binding of cAMP to PKA causes the catalytic subunits of PKA to dissociate from the regulatory subunits and become an active kinase. PKA is known to enhance insulin secretion by closing ATP-sensitive potassium channels, closing voltage-gated potassium channels, releasing calcium from the endoplasmic reticulum, and affecting insulin secretory granules. The exact mechanisms for PKA's action are not fully known. After prolonged increases in cAMP, PKA translocates to the nucleus where it regulates the PDX-1 and CREB transcription factors, activating transcription of the insulin gene.

cAMP produced by AC VIII also activates Epac1 and Epac2, which catalyze the exchange of GTP for GDP on G-proteins, notably Rap1A. Rap1A regulates insulin secretory granules and is believed to activate the Raf/MEK/ERK mitogenic pathway leading to proliferation of beta cells. The Epac proteins also interact with RYR calcium channels on the endoplasmic reticulum, the SUR1 subunits of ATP-sensitive potassium channels, and the Piccolo:Rim2 calcium sensor at the plasma membrane.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-28</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-06-02</td>
<td>Reviewed</td>
<td>Gillespie, ME.</td>
</tr>
</tbody>
</table>
Glucagon-like Peptide-1 Receptor (GLP1R) binds Glucagon-like peptide-1

Location: Glucagon-like Peptide-1 (GLP1) regulates insulin secretion

Stable identifier: R-HSA-381612