Transcriptional regulation of white adipocyte differentiation

D'Eustachio, P., Gopinathrao, G., Kersten, S., May, B., Sethi, JK.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

13/03/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 75

This document contains 1 pathway and 18 reactions (see Table of Contents)
Adipogenesis is the process of cell differentiation by which preadipocytes become adipocytes. During this process the preadipocytes cease to proliferate, begin to accumulate lipid droplets and develop morphologic and biochemical characteristics of mature adipocytes such as hormone responsive lipogenenic and lipolytic programs. The most intensively studied model system for adipogenesis is differentiation of the mouse 3T3-L1 preadipocyte cell line by an induction cocktail of containing mitogens (insulin/IGF1), glucocorticoid (dexamethasone), an inducer of cAMP (IBMX), and fetal serum (Cao et al. 1991, reviewed in Farmer 2006). More recently additional cellular models have become available to study adipogenesis that involve almost all stages of development (reviewed in Rosen and MacDougald 2006). In vivo knockout mice lacking putative adipogenic factors have also been extensively studied. Human pathways are traditionally inferred from those discovered in mouse but are now beginning to be validated in cellular models derived from human adipose progenitors (Fischer-Posovszky et al. 2008, Wdziekonski et al. 2011).

Adipogenesis is controlled by a cascade of transcription factors (Yeh et al. 1995, reviewed in Farmer 2006, Gesta et al. 2007). One of the first observable events during adipocyte differentiation is a transient increase in expression of the CEBPB (CCAAT/Enhancer Binding Protein Beta, C/EBPB) and CEBPD (C/EBPD) transcription factors (Cao et al. 1991, reviewed in Lane et al. 1999). This occurs prior to the accumulation of lipid droplets. However, it is the subsequent inductions of CEBPA and PPARG that are critical for morphological, biochemical and functional adipocytes.

Ectopic expression of CEBPB alone is capable of inducing substantial adipocyte differentiation in fibroblasts while CEBPD has a minimal effect. CEBPB is upregulated in response to intracellular cAMP (possibly via pCREB) and serum mitogens (possibly via Krox20). CEBPD is upregulated in response to glucocorticoids. The exact mechanisms that upregulate the CEBPs are not fully known.
CEBPB and CEBPD act directly on the Peroxisome Proliferator-activated Receptor Gamma (PPARG) gene by binding its promoter and activating transcription. CEBPB and CEBPD also directly activate the EBF1 gene (and possibly other EBFs) and KLF5 (Jimenez et al. 2007, Oishi 2005). The EBF1 and KLF5 proteins, in turn bind, and activate the PPARG promoter. Other hormones, such as insulin, affect PPARG expression and other transcription factors, such as ADD1/SREBP1c, bind the PPARG promoter. This is an area of ongoing research.

During adipogenesis the PPARG gene is transcribed to yield 2 variants. The adipogenic variant 2 mRNA encodes 30 additional amino acids at the N-terminus compared to the widely expressed variant 1 mRNA.

PPARG encodes a type II nuclear hormone receptor (remains in the nucleus in the absence of ligand) that forms a heterodimer with the Retinoid X Receptor Alpha (RXRA). The heterodimer was initially identified as a complex regulating the aP2/FABP4 gene and named ARF6 (Tontonoz et al. 1994).

The PPARG:RXRA heterodimer binds a recognition sequence that consists of two hexanucleotide motifs (DR1 motifs) separated by 1 nucleotide. Binding occurs even in the absence of ligands, such as fatty acids, that activate PPARG. In the absence of activating ligands, the PPARG:RXRA complex recruits repressors of transcription such as SMRT/NCoR2, NCoR1, and HDAC3 (Tontonoz and Spiegelman 2008).

Each molecule of PPARG can bind 2 molecules of activating ligands. Although, the identity of the endogenous ligands of PPARG is unknown, exogenous activators include fatty acids and the thiazolidinedione class of antidiabetic drugs (reviewed in Berger et al. 2005, Heikkinen et al. 2007, Lemberger et al. 1996). The most potent activators of PPARG in vitro are oxidized derivatives of unsaturated fatty acids. Upon binding activating ligands PPARG causes a rearrangement of adjacent factors: Corepressors such as SMRT/NCoR2 are lost and coactivators such as TIF2, PRIP, CBP, and p300 are recruited (Tontonoz and Spiegelman). PPARG also binds directly to the TRAP220 subunit of the TRAP/Mediator complex that recruits RNA polymerase II. Thus binding of activating ligand by PPARG causes transcription of PPARG target genes.

Targets of PPARG include genes involved in differentiation (PGAR/HFARP, Perilipin, aP2/FABP4, CEBPA), fatty acid transport (LPL, FAT/CD36), carbohydrate metabolism (PEPCK-C, AQP7, GK, GLUT4 (SLC2A4)), and energy homeostasis (LEPTIN and ADIPONECTIN) (Perera et al. 2006).

Within 10 days of differentiation CEBPB and CEBPD are no longer located at the PPARG promoter. Instead CEBPA is present. EBF1 and PPARG bind the CEBPA promoter and activate transcription of CEBPA, one of the key transcription factors in adipogenesis. A current hypothesis posits a self-reinforcing loop that maintains PPARG expression and the differentiated state: PPARG activates CEBPA and CEBPA activates PPARG. Additionally EBF1 (and possibly other EBFs) activates CEBPA, CEBPA activates EBF1, and EBF1 activates PPARG.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of CEBPB in adipogenesis

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-381337

Type: omitted

Compartments: nucleoplasm

Inferred from: Expression of Cebpb (Mus musculus)

Expression of the CEBPB and CEBPD transcription factors is induced by at least three factors:

1) Mitogens such as those present in fetal serum act via the Krox20 transcription factor to activate expression of CEBPB.

2) Glucocorticoids activate expression of CEBPD.

3) Hormones or drugs that increase intracellular cAMP act via pCREB to activate expression of CEBPB.

The detailed mechanisms of activation are not yet known.

Followed by: Expression of PPARG, Expression of EBF1, Expression of KLF5, Expression of Adiponectin

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of CEBPD

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-977392

Type: omitted

Compartments: nucleoplasm

Inferred from: Expression of Cebpd (Mus musculus)

Expression of the CEBPB and CEBPD transcription factors is induced by at least three factors:

1) Mitogens such as those present in fetal serum act via the Krox20 transcription factor to activate expression of CEBPB.

2) Glucocorticoids activate expression of CEBPD.

3) Hormones or drugs that increase intracellular cAMP act via pCREB to activate expression of CEBPB.

The detailed mechanisms of activation are not yet known.

Followed by: Expression of EBF1, Expression of KLF5, Expression of PPARG

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D’Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Increased expression of KLF5 occurs after activation of the transcription factors CEBPB and CEBPD during differentiation and activation of KLF5 depends on CEBPB and CEBPD. Both CEBPB and CEBPD bind the promoter of the KLF5 gene upstream of the site of transcription initiation and activate transcription of KLF5.

Preceded by: Expression of CEBPB in adipogenesis, Expression of CEBPD

Followed by: Expression of PPARG

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of EBF1

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-977271

Type: omitted

Compartments: nucleoplasm

Inferred from: Expression of Ebf1 (Mus musculus)

The gene encoding transcription factor EBF1 is transcribed to yield mRNA and the mRNA is translated to yield protein in pre-adipocytes and adipocytes. Transcription of EBF1 is enhanced by CEBPB and CEBPD, which bind the EBF1 promoter.

Preceded by: Expression of CEBPB in adipogenesis, Expression of CEBPD

Followed by: Expression of CEBPA, Expression of PPARG

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Authors</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
<td></td>
</tr>
<tr>
<td>2010-10-18</td>
<td>Authored, Edited</td>
<td>May, B.</td>
<td></td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
<td></td>
</tr>
</tbody>
</table>
Expression of PPARG

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-381283

Type: omitted

Compartments: nucleoplasm

Inferred from: Expression of Pparg (Mus musculus)

The transcription factors CEBPB, CEBPD, and KLF5 simultaneously bind the PPARG promoter and synergistically activate transcription of the PPARG gene. These three factors activate transcription after initial stimulation of adipocyte differentiation but then are replaced by CEBPA within 10 days. CEBPA and other factors may be responsible for long term maintenance of PPARG expression and the differentiated state.

Pre-adipose tissue contains both the widely expressed PPARG isoform 1 mRNA and the more tissue-specific PPARG isoform 2. The PPARG isoform 2 mRNA is translated to yield PPARG isoform 2 protein, which has 505 amino acid residues (57 KDa) and is the longest of the 4 observed variants. Isoform 2 is specific to preadipose and adipose tissue (Mukherjee et al. 1997). Confusingly, the longest variant is called isoform 1 in some publications.

In mouse, by 10 days after induction of adipocyte differentiation Cebpa, but neither Cebpb nor Cebpd, is detectable at the Pparg promoter. While adipocyte differentiation can proceed without Cebpa, adipocytes differentiated from Cebpa-knockout cells are insulin insensitive due to a defect in Glut4 (Slc2a4) vesicle trafficking.

The adipogenesis regulatory factor (ADIRF, aka AFRO, APM2, C10orf116) promotes adipogenic differentiation and stimulates transcription initiation of master adipogenesis factors like PPARG and CEBPA (Ni et al. 2013).

Preceded by: Expression of CEBPB in adipogenesis, Expression of KLF5, Expression of EBF1, Expression of CEBPD

Followed by: Formation of PPARG:RXRA heterodimer (ARF6 complex)

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D’Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Formation of PPARG:RXRA heterodimer (ARF6 complex)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-381262

Type: binding

Compartments: nucleoplasm

PPARG binds the Retinoic acid X Receptor RXRA to form a heterodimer that has transcriptional activation activity. The complex was initially called ARF6 when discovered. PPARG binds RXRA via the C-terminus and AF-2 regions of PPARG.

Preceded by: Expression of PPARG

Followed by: PPARG:RXRA heterodimer binds to PPARG corepressors

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
PPARG:RXRA heterodimer binds to PPARG corepressors

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-381290

Type: binding

Compartments: nucleoplasm

Inferred from: Pparg:Rxra heterodimer binds to PPARG corepressors (Mus musculus)

The PPARG:RXRA heterodimer binds specific the PPRE element, two 6-bp DR-1 motifs separated by 1 nucleotide, in the promoters of target genes such as aP2/FABP4 even in the absence of fatty acid ligands that activate PPARG. When activating ligands of PPARG are absent PPARG:RXRA recruits corepressors such as NCoR2(SMRT), NCoR, and HDAC3 to maintain the target gene in an inactive state.

Preceded by: Formation of PPARG:RXRA heterodimer (ARF6 complex)

Followed by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
PPARG can be activated in cell cultures by adding ligands such as polyunsaturated fatty acids and certain prostanoids (prostaglandins). Endogenous fatty acids are relatively poor activators. Which ligands are most responsible for PPARG activation in the body has not yet been established. Generally, oxidized fatty acids such as 9(S')-hydroxyoctadeca-10,12-dienoic acid (9(S')-HODE) and 13(S')-HODE are more effective activators than are endogenous fatty acids. The thiazolidinedione (TZD) class of antidiabetic drugs are agonist ligands for PPARG (Lambe and Tugwood 1996).

FABP4 delivers ligands to PPARG directly. Binding of activator ligands to PPARG causes loss of corepressors such as SMRT/NCoR2, NCoR1, and HDAC3 and gain of interactions with the basal transcription machinery (Yoo et al. 2006). The TRAP220/MED1/DRIP205 subunit of the TRAP/Mediator (DRIP) complex binds directly to the LXXLL motif of PPARG and TRAP/Mediator is necessary for full transcriptional activation of target genes (Ge et al. 2008). PPARG also interacts with the MED14 subunit of the Mediator complex (Grontved et al. 2010).

The target genes of PPARG encode proteins involved in adipocyte differentiation (PGAR/ANGPTL4, PLIN, and aP2/FABP4), carbohydrate metabolism (PEPCK-C), and fatty acid transport (FAT/CD36, LPL).

Preceded by: PPARG:RXRA heterodimer binds to PPARG corepressors

Followed by: Expression of Lipoprotein lipase (LPL), Expression of FABP4 (aP2), Expression of ANGPTL4, Expression of Phosphoenolpyruvate carboxykinase 1 (PEPCK-C), Expression of Perilipin (PLIN), Expression of
expression of CEBPA, expression of CD36 (platelet glycoprotein IV, FAT), expression of Adiponectin

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Authors/Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-11-20</td>
<td>Edited</td>
<td>Gopinathrao, G., May, B.</td>
</tr>
<tr>
<td>2009-05-15</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D’Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of FABP4 (aP2)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560510

Type: omitted

Compartments: nucleoplasm, lipid droplet

The FABP4 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Expression of FABP4 is activated during adipogenesis.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of Perilipin (PLIN)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560493

Type: omitted

Compartments: nucleoplasm, lipid droplet

The Perilipin (PLIN) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Expression of Perilipin is upregulated during adipogenesis.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of Phosphoenolpyruvate carboxykinase 1 (PEPCK-C)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560472

Type: omitted

Compartments: nucleoplasm, cytosol

The PEPCK-C gene is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of ANGPTL4

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560473

Type: omitted

Compartments: nucleoplasm, extracellular region

The ANGPTL4 gene is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Type</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2009-06-08</td>
<td>Reviewed</td>
<td>Kersten, S.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of Lipoprotein lipase (LPL)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560498

Type: omitted

Compartments: nucleoplasm, extracellular region

The LPL gene is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of CEBPA

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560491

Type: omitted

Compartments: nucleoplasm

Inferred from: Expression of Cebpa (Mus musculus)

The CEBPA gene is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands, Expression of EBF1

Followed by: Expression of GLUT4, Expression of Leptin, Expression of Adiponectin

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of CD36 (platelet glycoprotein IV, FAT)

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-560517

Type: omitted

Compartments: nucleoplasm, plasma membrane

The Platelet glycoprotein IV gene (CD36, PAS IV, GPIV) is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: PPARG:RXRA heterodimer binds to fatty acid-like ligands

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2009-06-08</td>
<td>Reviewed</td>
<td>Kersten, S.</td>
</tr>
<tr>
<td>2010-03-23</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of Leptin

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-1183003

Type: omitted

Compartments: nucleoplasm, extracellular region

The Ob gene encoding leptin is transcribed to yield mRNA and translated to yield protein. Expression of leptin is positively regulated by C/EBPalpha (CEBPA, Miller et al. 1996, Melzner et al. 2002) and negatively regulated by PPARG in adipocytes (De Vos et al. 1996).

Preceded by: Expression of CEBPA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-08</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of Adiponectin

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-1183058

Type: omitted

Compartments: nucleoplasm, extracellular region

The Adiponectin gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Expression of Adiponectin is upregulated during adipogenesis by C/EBPalpha (CEBPA), PPARG, and CEBPB (Segawa et al. 2009, Qiao et al. 2005, Iwaki et al. 2003, Kita et al. 2005).

Preceded by: Expression of CEBPA, PPARG:RXRA heterodimer binds to fatty acid-like ligands, Expression of CEBPB in adipogenesis

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-08</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Expression of GLUT4

Location: Transcriptional regulation of white adipocyte differentiation

Stable identifier: R-HSA-1183032

Type: omitted

Compartments: nucleoplasm, plasma membrane

The GLUT4 (SLC2A4) gene is transcribed to yield mRNA and the mRNA is translated to yield protein.

Preceded by: Expression of CEBPA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-27</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-02-08</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2011-02-10</td>
<td>Reviewed</td>
<td>Sethi, JK.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

1. Transcriptional regulation of white adipocyte differentiation
 - Expression of CEBPB in adipogenesis
 - Expression of CEBPD
 - Expression of KLF5
 - Expression of EBF1
 - Expression of PPARG

2. Formation of PPARG:RXRA heterodimer (ARF6 complex)

3. PPARG:RXRA heterodimer binds to PPARG corepressors

4. PPARG:RXRA heterodimer binds to fatty acid-like ligands

- Expression of PABP4 (aP2)
- Expression of Perilipin (PLIN)
- Expression of Phosphoenolpyruvate carboxykinase 1 (PEPCK-C)
- Expression of ANGPTL4
- Expression of Lipoprotein lipase (LPL)
- Expression of CEBPA
- Expression of CD36 (platelet glycoprotein IV, FAT)
- Expression of Leptin
- Expression of Adiponectin
- Expression of GLUT4

Table of Contents