Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 1 pathway and 2 reactions (see Table of Contents)

https://reactome.org
Sidekick-1 (SDK1) and sidekick-2 (SDK2) are cell adhesion molecules of the immunoglobulin superfamily expressed by nonoverlapping subsets of retinal neurons. They have been shown to function as neuronal targeting molecules, guiding developing neurons to specific synapses.

SDKs are concentrated at synapses that connect SDK-expressing pre- and postsynaptic partners, suggesting that their homophilic adhesion properties promote formation or stabilization of synapses.

SDKs promote lamina-specific synaptic connections in the retina and are specifically required for the formation of neuronal circuits that detect motion (Krishnaswamy et al. 2015).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author(s)</th>
<th>Reviewer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-02-26</td>
<td>Authored</td>
<td>de Bono, B., Garapati, P V.</td>
</tr>
<tr>
<td>2017-01-13</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-02-01</td>
<td>Reviewed</td>
<td>Sanes, JR., Honig, B.</td>
</tr>
</tbody>
</table>
SDK1 and SDK2 are homophilic adhesion molecules. Cells expressing them exhibit a strong preference to interact exclusively with cells expressing the same sidekick form. The N-terminal four Ig domains are arranged in a horseshoe conformation and mediate homophilic adhesion, with Ig1-2 conferring the majority of binding affinity and differential specificity.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-02-26</td>
<td>Authored</td>
<td>de Bono, B., Garapati, P V.</td>
</tr>
<tr>
<td>2017-01-13</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-02-01</td>
<td>Reviewed</td>
<td>Sanes, JR., Honig, B.</td>
</tr>
</tbody>
</table>
SDK2 homophilic interaction

Location: SDK interactions
Stable identifier: R-HSA-373741
Type: binding
Compartments: plasma membrane

SDK1 and SDK2 are homophilic adhesion molecules. Cells expressing them exhibit a strong preference to interact exclusively with cells expressing the same sidekick form. The N-terminal four Ig domains are arranged in a horseshoe conformation and mediate homophilic adhesion, with Ig1-2 conferring the majority of binding affinity and differential specificity.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-02-26</td>
<td>Authored</td>
<td>de Bono, B., Garapati, P V.</td>
</tr>
<tr>
<td>2017-01-13</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-02-01</td>
<td>Reviewed</td>
<td>Sanes, JR., Honig, B.</td>
</tr>
</tbody>
</table>
Table of Contents

- Introduction .. 1
- **SDK interactions** .. 2
 - ☝️ SDK1 homophillic interaction 3
 - ☝️ SDK2 homophillic interaction 4
- Table of Contents ... 5