WLS is endocytosed to the early endosome

Boutros, M., Matthews, L., Rothfels, K.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

20/11/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
WLS is endocytosed to the early endosome

Stable identifier: R-HSA-3247847

Type: omitted

Compartments: early endosome membrane, plasma membrane

WLS endocytosis is a clathrin-dependent process. In Drosophila cells, internalization of WLS has been shown to depend on clathrin, AP-2, dynamin, Rab5 and HRS (Belenkaya et al, 2006; Port et al, 2008), while in HeLa cells, WLS colocalizes with endogenous AP-2, and depletion of AP-2 increases WLS levels at the cell surface (Yang et al, 2008). A recent study identified a conserved YEGL endocytosis motif in the third intracellular loop of WLS that is required for its clathrin- and dynamin-dependent internalization (Gasnereau et al, 2011).

Literature references


Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-06</td>
<td>Authored</td>
<td>Rothfels, K.</td>
</tr>
<tr>
<td>2013-04-12</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2013-05-24</td>
<td>Reviewed</td>
<td>Boutros, M.</td>
</tr>
</tbody>
</table>