CDK1 phosphorylates CDCA5 (Sororin) at centromeres

Gillespie, ME., Matthews, L., Orlic-Milacic, M., Tanno, Y., Watanabe, Y., Zhang, N.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

18/11/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 78

This document contains 1 reaction (see Table of Contents)
CDK1 phosphorylates CDCA5 (Sororin) at centromeres

Stable identifier: R-HSA-2468287

Type: transition

Compartments: chromosome, centromeric region, cytosol

Phosphorylation of CDCA5 (Sororin) coincides with dissociation of CDCA5 from chromosomal arms in prometaphase, but phosphorylated CDCA5 persists on centromeres throughout prophase and metaphase. Several serine and threonine residues in CDCA5 are phosphorylated by CDK1 in prometaphase, but only the three sites that perfectly match the CDK1 consensus phosphorylation sequence are shown here - serines S21 and S75 and threonine T159 (Drier et al. 2011, Zhang et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-10-02</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2012-10-05</td>
<td>Edited</td>
<td>Gillespie, ME., Matthews, L.</td>
</tr>
<tr>
<td>2012-10-22</td>
<td>Reviewed</td>
<td>Zhang, N.</td>
</tr>
<tr>
<td>2012-11-20</td>
<td>Reviewed</td>
<td>Watanabe, Y., Tanno, Y.</td>
</tr>
</tbody>
</table>