Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)

Holzenberger, M., May, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

08/08/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 69

This document contains 2 pathways and 2 reactions (see Table of Contents)
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)

Stable identifier: R-HSA-2404192

Compartments: plasma membrane, cytosol, extracellular region

Binding of IGF1 (IGF-I) or IGF2 (IGF-II) to the extracellular alpha peptides of the type 1 insulin-like growth factor receptor (IGF1R) triggers the activation of two major signaling pathways: the SOS-RAS-RAF-MAPK (ERK) pathway and the PI3K-PKB (AKT) pathway (recently reviewed in Pavelic et al. 2007, Chitnis et al. 2008, Maki et al. 2010, Parella et al. 2010, Annunziata et al. 2011, Siddle et al. 2012, Holzenberger 2012).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-07-08</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-11-10</td>
<td>Reviewed</td>
<td>Holzenberger, M.</td>
</tr>
</tbody>
</table>
Either IGF1 (IGF-I) or IGF2 (IGF-II) can bind the type 1 insulin-like growth factor receptor (IGF1R) (Casella et al. 1986, LeBon et al. 1986, Maly and Lüthi 1986, Cacieri et al. 1988, Steele-Perkins et al. 1988, Burgisser et al. 1991, Germain-Lee et al. 1992, Keyhanfar et al. 2007, Alvino et al. 2009, Alvino et al. 2011). IGF1R has similar affinities for IGF1 and IGF2 (Casella et al. 1986, Steele-Perkins et al. 1988). The binding sites for IGF1 and IGF2 are in a similar location on the alpha peptide of IGF1R but there are some differences in which residues of IGF1R interact with IGF1 vs. IGF2 (Keyhanfar et al. 2007, Alvino et al. 2009, Alvino et al. 2011).

Followed by: IGF1,2:IGF1R autophosphorylates

Literature references

IGF1,2:IGF1R autophosphorylates

Location: Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)

Stable identifier: R-HSA-2404199

Type: transition

Compartments: plasma membrane, cytosol

The beta peptide of the type 1 insulin-like growth factor (IGF1R) spans the plasma membrane and trans-autophosphorylates tyrosine residues in response to binding of either IGF1 or IGF2 by the extracellular alpha peptide (LeBon et al. 1986, Yu et al. 1986, Doronio et al. 1990, Hernandez-Sanchez et al. 1995, Alvino et al. 2001).

Preceded by: IGF1,2 binds IGF1R

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Author/Editor</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-07-08</td>
<td></td>
<td>Authored, Edited</td>
<td>Holzenberger, M.</td>
</tr>
<tr>
<td>2012-11-10</td>
<td></td>
<td>Reviewed</td>
<td></td>
</tr>
</tbody>
</table>
After autophosphorylation the type 1 insulin-like growth factor receptor (IGF1R) binds and phosphorylates scaffold proteins, IRS1/2/4 and SHC1, which in turn bind effectors possessing enzymatic activity (recently reviewed in Pavelic et al. 2007, Chitnis et al. 2008, Maki et al. 2010, Parrella et al. 2010, and Siddle et al. 2012). IRS1/2/4 can bind both PI3K (via the p85 subunit of PI3K) and the GRB2:SOS complex. PI3K activates PKB (AKT, AKT1) signaling. GRB:SOS stimulates RAS to exchange GDP for GTP leading to activation of RAF and MAPK.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-08-07</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-11-10</td>
<td>Reviewed</td>
<td>Holzenberger, M.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)

 IGF1,2 binds IGF1R

 IGF1,2:IGF1R autophosphorylates

 IGF1R signaling cascade

Table of Contents