D'Eustachio, P., Jassal, B., Jupe, S., Le Novere, N., Rush, MG., Williams, MG.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

26/04/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 80

This document contains 9 pathways and 5 reactions (see Table of Contents)
Eicosanoids, oxygenated, 20-carbon fatty acids, are autocrine and paracrine signaling molecules that modulate physiological processes including pain, fever, inflammation, blood clot formation, smooth muscle contraction and relaxation, and the release of gastric acid. Eicosanoids are synthesized in humans primarily from arachidonic acid (all-cis 5,8,11,14-eicosatetraenoic acid) that is released from membrane phospholipids. Once released, arachidonic acid is acted on by prostaglandin G/H synthases (PTGS, also known as cyclooxygenases (COX)) to form prostaglandins and thromboxanes, by arachidonate lipoxygenases (ALOX) to form leukotrienes, epoxygenases (cytochrome P450s and epoxide hydrolase) to form epoxides such as 15-eicosatetraenoic acids, and omega-hyrdrolases (cytochrome P450s) to form hydroxyeicosatetraenoic acids (Buczynski et al. 2009, Vance & Vance 2008).

Levels of free arachidonic acid in the cell are normally very low so the rate of synthesis of eicosanoids is determined primarily by the activity of phospholipase A2, which mediates phospholipid cleavage to generate free arachidonic acid. The enzymes involved in arachidonic acid metabolism are typically constitutively expressed so the subset of these enzymes expressed by a cell determines the range of eicosanoids it can synthesize.

Eicosanoids are unstable, undergoing conversion to inactive forms with half-times under physiological conditions of seconds or minutes. Many of these reactions appear to be spontaneous.

Literature references

<table>
<thead>
<tr>
<th>Date</th>
<th>Role</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-02-24</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-10</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
</tbody>
</table>
Hydrolysis of phosphatidylcholine

Location: Arachidonic acid metabolism

Stable identifier: R-HSA-111883